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Abstract

We explore the impact of rising incomes at the top of the distribution on spatial sorting
patterns within large U.S. cities. We develop and quantify a spatial model of a city with het-
erogeneous agents and non-homothetic preferences for neighborhoods with endogenous amenity
quality. As the rich get richer, demand increases for the high-quality amenities available in
downtown neighborhoods. Rising demand drives up house prices and spurs the development of
higher quality neighborhoods downtown. This gentrification of downtowns makes poor incum-
bents worse off, as they are either displaced to the suburbs or pay higher rents for amenities
that they do not value as much. We quantify the corresponding impact on well-being inequality.
Through the lens of the quantified model, the change in the income distribution between 1990
and 2014 led to neighborhood change and spatial resorting within urban areas that increased
the welfare of richer households relative to that of poorer households, above and beyond rising
nominal income inequality.
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1 Introduction

Over the last three decades income inequality in the United States has grown sharply, with income

growth concentrated at the top of the earnings distribution. At the same time, higher income

individuals have been moving back into urban cores, transforming downtown neighborhoods and

sparking a policy debate on gentrification within many US cities. We posit that these trends are

linked. Rich households are more likely to live downtown than middle-income households in part

because these areas afford them access to local amenities like restaurants or entertainment venues.1

As the incomes of the rich increase, aggregate demand for neighborhoods with these luxury urban

amenities rises and more of them choose to reside downtown, triggering the redevelopment of

previously low-income neighborhoods.

In this paper, we develop a model to formalize this mechanism. We use the model to quantify

how top income growth contributes to neighborhood change, measure the associated welfare effects,

and guide policy designed to curtail the resulting gentrification. The key model features include (i)

non-homothetic preferences for location: rich and poor households make systematically different

location choices within a given city and (ii) endogenous neighborhood development: the quality of

amenities in city neighborhoods responds endogeneously to demand. The macro and trade literature

have highlighted that a rise in nominal income inequality can induce an even stronger increase in

real income inequality in the presence of such non-homothetic preferences and endogeneous supply

responses. We apply this logic to the endogenous development of neighborhoods within cities.

Figure 1 motivates our analysis by summarizing the changes in spatial sorting by income in

large U.S. cities from 1970 to today. Specifically, the figure plots the propensity of households in

each Census income bracket to live “downtown” in 1970, 1990, and 2014 relative to the average

household in each period. Downtown is defined as the set of constant boundary Census tracts

closest to the city center that account for 10% of each CBSA’s population in 2000.2 We restrict

our analysis to the 100 largest CBSAs based on 1990 population.3 The figure documents that the

propensity to live downtown is U-shaped in household income, and has been so since at least 1970.

As is well known, poorer households are over-represented in downtown areas. A perhaps lesser

known fact is that richer households are also systematically over-represented downtown: above

$100, 000, the propensity to live downtown increases with income. Notably, Figure 1 also shows

that the U-shape has shifted in the recent period. Between 1990 and 2014, the rich have become

more likely to reside downtown, and the poor less so.

1For example, Aguiar and Bils (2015) estimate that restaurant meals and non-durable entertainment are among
the goods with the highest income elasticities. Couture and Handbury (2017) document that downtown areas of
major cities have a higher density of such amenities.

2CBSAs are Core-Based Statistical Areas defined by the U.S. Census Bureau. CBSAs consist of a core area with
substantial population, together with adjacent communities with a high degree of economic and social integration
with the core. CBSAs with population above 50,000 are also referred to as Metropolitan Statistical Areas (MSAs).

3See Appendix A for a detailed discussion of the construction and robustness of Figure 1. The patterns in Figure
1 hold for reasonable variation in our spatial definition of downtowns, as well as within detailed demographic groups.
These patterns are robust to controlling for many demographic characteristics, thus alleviating concerns that Figure
1 reflects demographic characteristics that are correlated with income, or changes in demographic characteristics that
are correlated with changes in income.
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Figure 1: Downtown Residential Income Propensity by Income
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Note: This figure shows sorting by income in 100 large CBSAs in 1970, 1990, and 2014. The 100 CBSAs are those
with the largest population in 1990. Each point plots the share of families in a given Census income bracket who
reside downtown in a given year – normalized by the share of all families who reside downtown that year – against the
median family income (in 1999 dollars) of that Census income bracket in that year. The downtown area of each CBSA
is defined as the set of tracts closest to the center of each CBSA that account for 10% of that CBSA’s population in
2000. The number of points on the graph is limited by the number of income brackets reported by the Census for
tract-level data. We compute the median income in each bracket using IPUMS microdata for the corresponding year
in the 100 largest CBSAs. The IPUMS microdata is adjusted for top-coding using the generalized Pareto method,
as described in Appendix C.

We develop a model of a stylized city that accommodates such U-shape sorting patterns and

then use the model to investigate how much of the recent change in the U-shape can be traced back

to changes in the income distribution over time. In the model, households are heterogeneous in in-

comes and choose where to live among neighborhoods that offer different qualities of amenities and

housing. Households trade off neighborhood attractiveness against cost of living. This cost depends

on local housing prices and on the cost of commuting to work. Preferences for neighborhoods are

non-homothetic: households with higher incomes are more willing to pay the higher cost of living

in desirable neighborhoods. On the supply side, neighborhoods are built by private developers

who compete for land within each area of the city. As top incomes grow, demand for high-quality

neighborhoods downtown rises leading to an increase in prices throughout downtown, including in

low-quality neighborhoods where the poor live. An increase in the supply of high-quality neighbor-

hoods, and an associated decrease in the variety of low-quality neighborhoods, amplifies this price

mechanism. Through these mechanisms, an influx of richer households downtown unambiguously

hurts the lower income renters residing there.

The model also builds in mitigating forces through which an influx of higher incomes downtown

could benefit incumbent poor households. First, local governments build public amenities like

parks or schools that benefit all households in a given location. The provision of public amenities
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increases as the tax base downtown increases. Second, some low-income downtown residents own

their homes, and hence reap the benefits of house price appreciation. Given these mitigating forces,

how an influx of richer households into downtown areas affects the well-being of lower income

households on net is a quantitative question.

Before fully estimating the model, we use micro data to provide evidence for the model’s key

sorting mechanism. We exploit changes in spatial sorting patterns in response to a CBSA-wide

income shock, driven by plausibly exogenous variation in labor demand across cities. Our instru-

mental variable estimation shows that an income shock raises house prices and amenity quality

downtown more than in the suburbs and induces the rich to re-sort into downtowns. These results

suggest that income growth triggers within-city spatial sorting disproportionately drawing the rich

downtown, consistent with our model of non-homothetic location choices.

This micro evidence yields an estimate for the elasticity that governs how income-dependent

within-city location choices are, a key parameter in our quantitative analysis. After fully quantifying

the model, we show that it is able to replicate the fact that downtown areas are disproportionately

populated by both very low and very high earners, mimicking the U-shape in Figure 1. In the model,

low-income households minimize the costs of housing and commuting by residing in low-quality

neighborhoods downtown. At the same time, higher income households are attracted downtown by

the density of high-quality, high-amenity luxury neighborhoods offered there.

We use the quantified model to back out how much of the change in spatial sorting between

1990 and 2014 comes from changes in the income distribution. We find that (i) the increased

incomes of the rich since 1990 are causing a phenomenon that looks like urban gentrification –

the in-migration of higher income residents downtown causes the amenity mix of neighborhoods to

change – and (ii) this mechanism can explain roughly forty percent of the urbanization of the rich

(top income decile) and roughly sixty percent of the suburbanization of the poor (bottom income

decile).4 These findings highlight that, while other forces outside of the model are also arguably

contributing to neighborhood change over the last few decades, the rising incomes of the rich play

a quantitatively important role in the recent rise in gentrification of urban centers.

To further validate the model, we present additional counterfactual analyses. First, we show

that a similar procedure applied to both the 1950-1970 and the 1970-1990 change in the income

distribution lead to spatial sorting responses that are qualitatively different to 1990-2014, but

similar to those observed in the data over the same earlier periods. While incomes increased during

these periods, our analysis suggests that there was not a sufficiently large increase in households

at very high income levels to trigger urbanization of the higher-income households. Second, we

4Throughout the paper, we often use “neighborhood change” of low-income neighborhoods and “gentrification”
interchangeably. We realize that gentrification is a complex process with many potential definitions and drivers. Our
interpretation is closest to the definition in the Merriam-Webster dictionary that defines gentrification as “the process
of renewal and rebuilding accompanying the influx of middle-class or affluent people into deteriorating areas that often
displaces poorer residents.” Our paper is not intended to explore all potential underlying causes of neighborhood
gentrification. Rather, we wish to focus on the dimension of gentrification that follows the rise in top incomes.
Specifically, we focus on the interaction of rising top incomes, non-homothetic preferences for urban amenities, and
endogenous spatial responses.
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show that the model also performs quite well at explaining cross-CBSA variation in spatial sorting

during the 1990 to 2014 period. We feed into our model changes in the income distribution that are

CBSA specific. The resulting model predictions match well the actual patterns of neighborhood

change observed empirically within each CBSA. These additional counterfactuals further highlight

the ability of our model to match empirical patterns linking changes in the income distribution and

changes in the propensity of high-income individuals to locate downtown.

We next use the quantified model to study the normative implications of changes in spatial

sorting. We find that the 1990-2014 increase in income inequality triggered an even larger increase

in well-being inequality once accounting for changes in neighborhood quality and spatial sorting.

Overall, we find that accounting for endogenous spatial sorting responses increased well-being

inequality between the top and bottom deciles of the income distribution by 3.6 percentage points

(on a base of 19 percentage points) during the past three decades. We further estimate that

the welfare of low-income renters was actually reduced by 0.75% from the resulting gentrification

stemming from top income growth during this period. Quantitatively, mitigating forces like the

public provision of amenities are not strong enough to overcome the base mechanism, which hurts

the poor primarily through higher rents.

Finally, we use the model to study the effect of stylized ‘anti-gentrification’ policies, for instance

one that taxes housing in high-quality neighborhoods downtown to subsidize housing in low-quality

neighborhoods downtown. We find that such policies can be effective in maintaining a diverse

income mix downtown. However, these policies do not overturn the increase in well-being inequality

that we find for 1990-2014, as price and quality upgrades are to a large extent pushed to the

suburbs. In contrast, a policy that relieves housing supply constraints downtown mitigates the

negative welfare impact of neighborhood change on the poor, but does not curb the influx of the

rich into downtowns.

Related Literature This paper contributes to four main literatures. First, a growing literature

studies how nominal income inequality growth can induce even stronger real income inequality

growth in models with non-homothetic preferences and endogeneous supply responses, especially

in the context of international trade.5 We apply this logic to the endogenous development of

neighborhoods within cities.

Second, we contribute to the quantitative spatial economics literature reviewed in Redding and

Rossi-Hansberg (2017), more specifically to the strand that studies the internal structure of cities

(Ahlfeldt et al. (2015); Allen et al. (2015); Redding and Sturm (2016)). Different from our approach,

these papers feature homogeneous workers, homothetic preferences, and model a specific city with

no extensive margin of within-city locations. We propose a stylized model of a representative city

that allows us to model the extensive margin: the number and quality of neighborhoods in a city

5Faber and Fally (2021) show that more productive firms target wealthier households; Jaravel (2018) shows that
innovation is skewed towards the growing top income market segment; Fajgelbaum et al. (2011), Fajgelbaum and
Khandelwal (2016) and Faber (2014) study the welfare consequences of trade across the income distribution. Dingel
(2016) provides evidence that the higher income residents generate endogenous supply of higher quality products in
U.S. cities.
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is endogenous. Our approach also uniquely studies spatial sorting and well-being across the full

distribution of incomes, with a common non-homothetic preference structure across incomes.6 The

model’s core mechanisms are drawn from Fajgelbaum et al. (2011) and relate to the assignment

model of Davis and Dingel (2020). Our framework retains the tractability of quantitative spatial

models, which allows us to take it to the data and quantify the impact of policies on neighborhood

change and welfare.7 Our paper therefore also complements recent work examining the welfare

implications of urban policies by Diamond et al. (2019), Eriksen and Rosenthal (2010), Baum-

Snow and Marion (2009), Diamond and McQuade (2019), and Hsieh and Moretti (2019).

Third, we contribute to the literature that studies changes in spatial sorting over time. In

an early contribution, Gyourko et al. (2013) show that the increase in high incomes nationally

can explain the upward co-movement of incomes and house prices observed in “superstar cities.”

Diamond (2016) shows that homophily among the college educated amplifies sorting behavior across

cities. Different from Diamond (2016), households have identical non-homothetic preferences in our

model. Changes in consumption and location choices stem from changes in income. Furthermore,

we model the economics behind the endogenous supply of neighborhoods within a city that fuels

increases in welfare inequality. Contemporaneous work also studies welfare inequality within cities.

For example, Fogli and Guerrieri (2019) focus on educational outcomes while Su (2018) emphasizes

the role of rising value of time for high skilled workers. Our focus on urban amenities as an

important dimension of neighborhood heterogeneity follows the early insights of Brueckner et al.

(1999) and Glaeser et al. (2001) on the “consumer city.” Lee (2010) studies the role of luxury

urban amenities in the sorting of the high-skilled into large cities. Recent work by Almagro and

Dominguez-Iino (2019) and Hoelzlein (2019) also study how endogenous amenities reinforce sorting

by income within cities.

Fourth, our approach complements a flourishing literature that highlights various causes and

consequences of gentrification and neighborhood change.8 Within this literature, our paper builds

on a growing strand that concludes that amenities play an important role in explaining demographic

shifts downtown, relative to changing job locations (Glaeser et al. (2001), Baum-Snow and Hartley

(2020), Couture and Handbury (2017), Su (2018)). Couture and Handbury (2017), for example,

document rising average commute distance for high-wage workers from 2002 to 2011 despite their

moving into downtown areas, and rising propensity to reverse-commute among the rich, i.e., to live

downtown but work in the suburbs. These findings illustrate that changing job location or changing

6Our paper complements recent work by Tsivanidis (2019) who uses Stone-Geary preferences to study the distri-
butional effects of infrastructure investment in Bogota across two skill groups. In country-wide spatial equilibrium
models, Peters et al. (2018) use PIGL preferences of a representative agent to study structural change across U.S.
counties and Fajgelbaum and Gaubert (2020) study optimal spatial policies in models with heterogeneous workers
who have heterogeneous but homothetic preferences over endogenous city amenities.

7Gaigne et al. (2017) theoretically analyze an extension of a classic linear city model with jobs and amenities
exogenously given at different locations on the line, in which non-homothetic preferences generates heterogeneous
spatial sorting.

8See, for example, Guerrieri et al. (2013), Edlund et al. (2019), Ellen et al. (2019), Berkes and Gaetani (2018),
Vigdor et al. (2002), Lance Freeman (2005), McKinnish et al. (2010); Ellen and ORegan (2010), Ding et al. (2016);
Brummet and Reed (2019), Meltzer and Ghorbani (2017), Lester and Hartley (2014), and Autor et al. (2017).
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taste for commutes alone are unlikely to rationalize the rising propensity of high-skilled workers to

live downtown. We contribute to this literature by documenting and quantifying a novel channel

(rising top incomes, coupled with income effects on location choice), as well as methodologically,

by providing a quantitative model that allows for policy assessment.

The rest of the paper proceeds as follows. Section 2 lays out the model and its properties. Section

3 presents the data and provides empirical evidence for the main mechanism of the model, while the

model is fully quantified in Section 4. The impact of the 1990-2014 change in income distribution

on within-city spatial sorting is presented in Section 5. Section 6 discusses the corresponding

normative and policy implications. Section 7 discusses the robustness of our findings to alternative

specification.

2 A model of the residential choice of heterogeneous households

2.1 Benchmark Model

We propose a model of residential location in a city. On the demand side, the model resembles

a conventional discrete choice of location framework, widely used in the quantitative spatial eco-

nomics literature, except that it features location choices that are income-dependent. On the supply

side, the model acknowledges that the urban landscape changes in response to shifts in demand,

and in particular to shifts in incomes, by featuring endogeneous development of neighborhoods of

heterogeneous qualities. Derivations and proofs are given in Appendix B.

2.1.1 Demand for Neighborhoods

The city is populated by households who have heterogeneous income, with a continuum of house-

holds at each level of income w. The CDF of the distribution of incomes is denoted F (.) and is

taken as a primitive of the model. A key object of interest will be how the city equilibrium changes

as the income distribution F (w) changes.

Each household ω makes a discrete choice of a neighborhood n to reside in. Neighborhoods

are grouped into four broad types. They are characterized, first, by their geographic region r.

Specifically, neighborhoods can be located either downtown (r = D) or in the suburbs (r = S).

Second, they differ in their intrinsic quality q, which captures for instance the attractiveness of their

amenities and the quality of their housing stock. Specifically, neighborhoods can be of High (q = H)

or Low (q = L) quality. Within each of the four types (r, q), there are Nrq neighborhoods to choose

from. They are assumed for simplicity to be symmetric. Importantly, the number of neighborhoods

of each type, Nrq, is an endogeneous variable in the model, as supply of neighborhoods responds

to demand.

Household ω makes a discrete choice of a neighborhood n where to live, trading-off quality of

life in a given neighborhood against the corresponding cost-of-living. Specifically, they maximize

the following indirect utility:

vωn = (wω − pn)Bnb
ω
n . (1)
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In this expression, wω is the income of household ω, pn the cost of living in neighborhood n, Bn

summarizes the quality of amenities in neighborhood n, and bωn is household ω’s idiosyncratic pref-

erence for neighborhood n, detailed below. We think of pn as the cost of housing, although the

model can be easily extended to encompass other costs like commuting costs.9 Formulation (1)

assumes that households have a unit consumption of housing. This simple assumption ensures that

lower-income households are more impacted by the high cost of living in attractive neighborhoods

than are higher-income households, which leads to spatial sorting by income, as we establish below.

Note that, despite this assumption, not all households spend the same amount on housing. In-

deed, households with different incomes choose systematically different neighborhoods, which have

different house prices.

Households have idiosyncratic preferences for neighborhoods denoted bωn . They are drawn iid

from a Generalized Extreme Value (GEV) distribution:

G({bn}) = exp

−
∑
r,q

 ∑
n∈Rrq

b−γn

−
ρ
γ


 , (2)

with ρ ≤ γ, where Rrq is the set of neighborhoods of type (r, q). The parameter ρ captures the

substitutability of neighborhoods of different quality and location types, while γ governs the higher

substitutability across neighborhoods of the same type. This structure gives rise to a demand

system similar to a nested-logit, popular in the empirical literature on discrete-choice modeling.

Households first make a choice over quality and location of neighborhoods (the “upper nest”), then

over horizontally differentiated neighborhoods within this category (the “lower nest”).10

The share of households who locate in a neighborhood of type (r, q) among households with

income w takes the familiar discrete-choice form:

λrq(w) =
∑
r∈Rrq

λr(w) =
V ρ
rq(w)∑

r′,q′ V
ρ
r′q′(w)

. (3)

In this expression,

Vrq (w) = N
1
γ
rqBrq (w − prq) (4)

9We make the implicit assumption that, in a first step that is not modeled, workers find jobs with income w in the
city. In a second step, they choose where to live within the city. Heterogeneous commuting costs of neighborhoods
are encompassed in expression 1, which can be derived from the more general specification

vn (ω) = ((1− τn)wω − p̃n) B̃nb
ω
n ,

where p̃n is the cost of housing in neighborhood n and τn is the commuting cost to work. Denoting pn = p̃n
1−τn and

Bn ≡ B̃n (1− τn) yields expression (1).
10See e.g. Fajgelbaum et al. (2011) for a detailed discussion of the properties of the resulting demand system. Note

that formulation (2) corresponds to a Frechet distribution when γ = ρ, in which case the independence of irrelevant
alternatives applies and all neighborhoods are equally substitutes for all households. The nested specification in (2)
departs from these restrictions, capturing more realistic patterns of individual preferences. Furthermore, as will be
clear from the properties of the model, the parameters ρ and γ govern two distinct economic forces in this framework.
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is the inclusive value of neighborhoods of type (r, q) for a household with income w, summing across

all the possible choices of neighborhood r of type (r, q). Importantly, this inclusive value increases

with the number of neighborhoods Nrq to choose from. This is because of a love-of-variety effect:

given the idiosyncratic preferences (2), more neighborhoods to choose from leads to better matches

between households and neighborhoods on average, yielding higher utility. Conveniently, this love

of variety for neighborhoods enters as an amenity shifter, similar to Brq, in (4). Consequently,

we will refer thereafter to N
1
γ
rqBrq as an “amenity composite” for neighborhood type (r, q). This

amenity composite is an endogeneous variable in the model, because the provision of neighborhoods

is itself endogeneous, as we turn to next. This feature is important as it captures the fact that the

quality of the urban landscape, beyond housing prices alone, responds to income composition in

the city. The intensity of this effect is governed by the parameter γ.

Taking stock, we see from (3) and (4) that, at all levels of incomes, the propensity of a household

to reside in a given type of neighborhood depends positively on the quality of its amenities, positively

on the variety of neighborhoods of that type the household can choose from, and negatively on its

housing cost.

2.1.2 Supply of Neighborhoods

Neighborhoods are supplied by private developers, who choose the quality and location (r, q) of the

neighborhood they develop. To develop a neighborhood of type (r, q), developers pay a fixed cost

frq, and then rent land Kr from local landowners to build Hrq = Kr/krq housing units of quality

q in location r. There is free entry of developers into each segment (r, q).

There are two geographically segmented markets for land: one in D and one in S. In each

market, there is perfect competition between atomistic landowners who rent out their land to

developers, with the following aggregate supply of land in market r:

Kr = K0
r (Rr)

εr , for r ∈ {D,S} (5)

where Rr is rent in region r, Kr is land supply, and K0
r is an exogenous size shifter. The parameter

εr captures the elasticity of land supply in location r. It is allowed to be higher in the suburbs

(εS > εD), capturing the notion that is is easier to expand land at the outskirts of the city - through

greenfield development and sprawl - than in densely built downtowns.

We allow for housing in high-quality neighborhoods to have a higher area requirement than

in low-quality neighborhoods, capturing the fact that housing units are larger in higher quality

neighborhoods , and/or that developers devote more space to residential amenities there. Formally,

we denote krq is the unit size of housing in a neighborhood of type (r, q), and allow for krH > krL.

The pricing and entry behavior of developers is summarized here, and described in further detail

in Appendix B.2. Given unit housing demand and monopolistic competition, equations (3) and (4)
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lead to the following housing pricing formula:

prq =
γ

γ + 1
krqRr +

1

γ + 1
W̄rq (6)

where krqRr is the unit cost of housing in (r, q) and W̄rq is a measure of demand for a neighborhood

of type (r, q).11 The parameter γ governs the size of markups (prq − krqRr) that developers can

extract - the lower the γ, the more differentiated neighborhoods are within a type, and the higher

the market power of developers.

Finally, through the free entry condition, the number Nrq of neighborhoods of type (r, q) adjusts

so that the operating profit of a developer in neighborhood type (r, q) just offsets the fixed cost,

that is:

Nrq =

∫
w λrq (w) (prq − krqRr) dF (w)

frq
. (7)

This equation determines how the supply of neighborhoods of each quality responds to the

city-wide income distribution F (.).

Definition 1. An equilibrium of the model is a distribution of location choices by income λrq(w),

housing prices prq, land rents Rr, and number of neighborhoods Nrq such that (i) households

maximize their utility; (ii) developers and landowners maximize profits; (iii) developers make zero

profits; and (iv) the markets for land and housing clear.

Given the structure of the model, it is straightforward to show that an equilibrium can be

expressed in terms of changes relative to another reference equilibrium that has different primitives,

such as a different city-level distribution of income. We leverage this approach in section 5.12

2.2 Equilibrium Properties

We now highlight the main properties of the model. We first show that, in a given equilibrium, the

model can capture rich income-based locational sorting patterns. We then turn to a comparative

statics exercise and ask: How does the spatial equilibrium change following a change in the city-wide

income distribution F (w)?

2.2.1 Sorting by income

Our first result is that the model yields residential sorting of households by income.

Proposition 1. High income households are over-represented in high cost-of-living neighborhoods.

11 Specifically, W̄rq =
∫
w(w−prq)−1

δrq(w)wdF (w)∫
w(w−prq)−1

δrq(w)dF (w)
where δrq(w) = 1{w − prq > 0}.

12The model may give rise to multiple equilibria if the agglomeration effects at play are too strong compared to the
dispersion forces, driven by the housing supply (in-)elasticity εr and the idiosyncratic preference for locations-quality
types driven by ρ and γ. Around our estimated parameter values, we have not found evidence for such multiple
equilibria, suggesting that the calibrated parameters are low enough for equilibrium uniqueness.
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Formally, Proposition 1 simply stems from the fact that
∂2 log Vrq(w)
∂w∂prq

> 0, or equivalently
∂2 log λrq(w)
∂w∂prq

> 0. Higher income households are less sensitive to house prices than lower income

households so that, all else equal, they are over-represented in expensive neighborhoods. This is

obtained here by assuming that each household consumes one unit of housing, which yields simple

non-homotheticity in consumption, but we would obtain a similar result with any non-homothetic

preferences for c and h in which housing is a necessity (see Gaubert and Robert-Nicoud (2021)).13

Second, in our setup, the intensity of this sorting by income in the city is crucially shaped by

the preference parameter ρ:

Lemma 1. The intensity of income-based residential sorting increases with ρ, all else equal.

Indeed, the relative propensity to live in various neighborhood types by income can be written

as:
λrq(w)/λrq(w

′)

λr′q′(w)/λr′q′(w′)
=

[
(w − prq) / (w′ − prq)(
w − pr′q′

)
/
(
w′ − pr′q′

)]ρ , (8)

so that ∂
∂ρ

(
∂2 log λrq(w)
∂w∂prq

)
> 0: the higher is ρ, the more richer households are over-represented in

expensive neighborhoods, all else equal. In that sense, the parameter ρ ends up governing the

strength of income effects in location choice. This makes ρ a particularly important parameter to

estimate in our quantitative exercise.

Finally, we go back to a key stylized fact that our model aims to capture: the U-shaped

propensity to live downtown by income, established empirically in Figure 1. The corresponding

object of interest in the model is share of households that lives in r = D at each level of income,

that is:

λD (w) =
∑
q

λDq (w) .

Recalling that, in the model, there are four neighborhood types in the city (DH, DL, SH, and

SL), we derive the following result:

Lemma 2. The share of households living downtown is a U-shaped function of income if the

following condition holds:

pDL < pSL < pSH < pDH . (9)

The formal proof of Lemma 2 establishes that the share of households living in the most ex-

pensive neighborhoods in the city necessarily increases with income, while the share of households

13In contrast to what we do here, the literature in economic geography frequently models housing consumption
assuming Cobb-Douglas preferences, which deliver a constant expenditure share of housing and a unit income elasticity
of housing. This assumption is well suited for models of location choice across cities with homogeneous workers, as
shown by Davis and Ortalo-Magne (2011). Davis and Ortalo-Magne (2011) compute, city by city, the distribution
of expenditure on housing divided by income, and show that the median of this distribution is stable across cities.
This approach is silent on how housing shares vary by income within cities, which our model focuses on. Aguiar
and Bils (2015) show using CEX data that housing consumption has an income elasticity that is lower than 1. Our
model assumption is better suited than one relying on Cobb-Douglas preferences to capture the empirical fact that
the expenditure share on housing decreases with income, as we discuss below.
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living in the least costly neighborhoods of the city necessarily decreases with income. When both

the most expensive and the least expensive neigbhorhoods are downtown, as in (9), the propen-

sity of households to live in downtown is a U-shaped function of income. Intuitively, high-income

households are attracted downtown by high-quality amenities provided in expensive neighborhoods,

while low-income households are attracted downtown by a relatively low cost of living in low-quality

neighborhoods.

2.2.2 Effect of a change in income distribution

We have established in equations (3) and (4) that location choices depend on two endogenous

neighborhood characteristics: an “amenity composite” (N
1
γ
rqBrq), which is endogeneous through Nrq

- the supply of neighborhoods of a given quality-location - and the cost-of-living (prq), determined

in equation (6). How do these characteristics change following a change in the income distribution

in the city?

Suppose that initially, the spatial equilibrium displays the empirically-relevant U-shape pattern

of sorting as in Lemma 2. We now ask: what is the effect of a small increase in the relative number

of high-income households? Formally, we study a small increase in the relative number of high-

income households in the sense of first-order stochastic dominance (FOSD). We consider a class of

income distributions indexed by ι, Fι(w), ordered in the sense of FOSD, that is:

ι > ι′ ⇒ Fι(w) ≤ Fι′(w).

Starting at income distribution Fι(w), we consider an infinitesimal increase in ι. The key sorting

mechanism in the model in response to a shift in the income distribution acts through changes in

housing prices, themselves driven by changes in land prices (equation (6)), as follows:

Lemma 3. Given a small increase ι in the relative number of high-income households, downtown

land prices increase: ∂RD
∂ι ≥ 0.

Through the market for urban land, a demand shock for housing in high-quality neighborhoods

pushes up downtown land prices, transmitting the shock to the entire urban area, including in

low-quality downtown neighborhoods. The intensity of the price increase is shaped by the housing

supply elasticity εD. A more inelastic supply downtown leads to steeper price increases there, all

else equal. Given the impact of neighborhood prices on sorting (see Proposition 1), increased prices

downtown tend to increase the share of high income residents and decrease the share of low-income

residents there.

This price mechanism is further reinforced by an amplification mechanism, as follows:

Lemma 4. Given a small increase ι in the relative number of high-income households, the perceived

quality of the most expensive neighborhood option increases (∂NDH∂ι > 1), while the perceived quality

of the least expensive neighborhood option decreases (∂NDL∂ι < 1).
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This result is quite intuitive: as the number of high-income households increases in the city,

there is increased demand for the luxury option DH, which results in an increased supply of such

high-quality neighborhoods downtown. Importantly, this endogenous increase in the supply of DH

neighborhood makes the DH option even more attractive, because preferences for neighborhoods

embed a love-of-variety effect (the strength of which is governed by γ). This fuels further the

sorting of richer households downtown, amplifying the price mechanism described above. Because

γ governs this love of variety effect, it is a key parameter for our quantitative exercise.

To conclude, shifts in the city-wide income distribution impact not only housing prices but

also the urban landscape more generally: neighborhoods endogenously becomes higher quality - a

phenomenon that looks like urban gentrification. Our framework therefore formalizes a model for

the gentrification of poorer neighborhoods in a city, as a result of demand and supply shifts for

these neighborhoods.

2.3 Extensions and Empirical Implementation

Our benchmark model is stylized along several dimensions. Notably, the benchmark model’s main

mechanisms increase welfare inequality unambiguously in response to top income growth: endoge-

nous supply responses (lemma 4) benefit the rich while hurting the poor through price effects

(lemma 3). In this section, we develop model extensions that add nuance to this benchmark model,

including mechanisms through which the inflow of richer households downtown may benefit the

poor. For simplicity, we review these extensions one at a time, although we incorporate them

jointly in a unified quantitative framework in sections 4 and 5.

2.3.1 Publicly-financed amenities

A limitation of the benchmark model is that it does not account for the fact that higher income

households moving downtown increase the tax base and hence the provision of public amenities

in urban municipalities, whereby benefiting poor incumbent households. To capture this notion,

we assume that part of the attractiveness of neighborhoods is driven by public amenities such as

parks, public schools, or policing, financed by local governments. They respond to taxes according

to:

Brq = Bo
rq (Gr)

Ω , (10)

where Gr is local government spending in location r, Ω is the supply elasticity of public amenities,

and Bo
rq captures the part of amenities not determined by local government spending. Governments

can levy taxes on local households, summarized by Tr(w) for households with income w. Spending

is equal to taxes levied in the location r:

Gr =

∫
λr(w)Tr(w) dF (w). (11)

As the tax base downtown increases, government revenues Gr increase, which raises amenities
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for all households downtown, irrespective of the quality of their neighborhood.

2.3.2 Home ownership

The benchmark model is static, hence it cannot capture the important notion that, as neighbor-

hoods downtown gentrify, homeowners in gentrifying neighborhoods reap the price appreciation of

their home. We embed this notion in the quantitative model in a simple way, allowing for household

income to depend not only on their labor income, but also on the capital appreciation of their real

estate portfolio, denoted by χ(w). Combined with taxes described above, net household income

becomes:

w + χ (w)− Tr(w). (12)

We allow the real estate portfolio χ (w) to depend on household type w to capture the corre-

sponding heterogeneity in homeownership rates and initial locations in the data. As land prices in

downtown neighborhoods increase, incumbent homeowners receive a capital gain on their housing

stock making them better off compared to renters. The extent of this mitigating force is governed

by χ (w) which we discipline empirically by matching homeownership rates by income in different

locations.

2.3.3 Change in Job Location

Our focus is to isolate the effect of changes in income on changes in spatial sorting, through non-

homothetic preferences for neighborhoods. We have kept the model minimal on other dimensions

that likely contribute, in part, to changes in sorting. Change in jobs location is one such dimension.

The framework can be extended – at the cost of a more cumbersome exposition – to model the

joint choice of workplace and residential location as in Ahlfeldt et al. (2015). This extension would

allow us to account for the possibility that changes in job location triggers skill-dependent re-

sorting, a different channel for changes in spatial sorting by income. However, we note that current

evidence in the literature indicates that spatial job sorting plays little to no role in explaining

recent downtown gentrification. First, Su (2018) investigates job urbanization by skill from 1994

to 2010, and finds no difference in job location trends between high- and low-skilled jobs: they

both suburbanize somewhat over that time period, at the same rate. Second, Baum-Snow and

Hartley (2020) decompose the role of residential demand vs. labor demand in explaining 2000-2010

downtown gentrification. They conclude that labor demand plays little role. Third, Couture and

Handbury (2017) conclude that high wage jobs - in the upper third of the wage distribution - do

not urbanize fast enough from 2002-2011 to be an important driver of urban gentrification.14 Given

the general conclusion in the urban literature that job location is not an important driver of recent

14Moreover, data from the U.S. Census shows that commuting times increased the most for downtown CBSA
residents in the top income deciles between 1990 and 2014 (authors’ calculations). This is consistent with the recent
literature documenting the increased propensity of high-income households living in urban centers to reverse commute
- i.e., to live downtown and work in the suburbs.

13



urban gentrification, and given also the limited impact that commuting costs ultimately have on

our quantification, we have refrained from complexifying the model in that dimension.

The mechanisms described in this subsection mitigate the adverse effect of an increase in income

inequality on welfare inequality, while endogeneous neighborhood supply amplify the baseline price

effect. The net effect of increased incomes of the rich on welfare inequality through spatial sorting

is therefore ambiguous. We turn next to its quantification.

3 Evidence on Spatial Sorting by Income

In this section, we provide empirical evidence in support of the income-based sorting mechanism at

the heart of our model. The strength of this sorting mechanism pins down the parameter ρ, which

will be important for the quantitative exercise that follows.

3.1 Mapping Model to Data

Our empirical work requires data on household location decisions and housing costs mapped into

the spatial units employed in the model. Herein, we describe this mapping and summarize our

main data sources. The full exposition of the data work is detailed in Appendix C.

Spatial Units and Classifications We equate the notion of a city to a Core-Based Statistical

Area (CBSA), and that of a neighborhood to a census tract. All data are interpolated to constant

2010-boundary tracts and 2014-boundary CBSAs using the Longitudinal Tract Data Base (LTBD).

Within each CBSA, we define downtown as the set of tracts closest to the center of the CBSA

that accounted for 10 percent of the CBSA’s population in 2000.15 This spatial boundary of

downtown is constant across all years. We refer to all remaining non-downtown tracts in each

CBSA as suburban, so that tracts are either classified as downtown (D) or suburban (S). Appendix

A.1 features maps showing which tracts in New York, Chicago, Philadelphia, San Francisco, Boston

and Las Vegas are classified as downtown and suburban.16

We define neighborhood quality using residential demographic composition. We draw from

Diamond (2016), who shows that the college-educated share can proxy for endogenous amenities.

Specifically, we classify a neighborhood to be high quality if at least 40 percent of residents between

the ages of 25 and 65 have at least a bachelor’s degree. Under this definition, 15, 22, and 32 percent

of census tracts in the top 100 CBSAs are respectively classified as high quality in 1990, 2000, and

2014.

Income and House Prices Our data on location choice by household income is from the 1990

Census and the 2012-2016 American Community Surveys (henceforth referred to as the “2014

15We use the CBSA centers from Holian and Kahn (2012), who identify the coordinates returned by Google Earth
for a search of each CBSA’s principal city.

16We explore the robustness of our main results to alternative definitions of the downtown area in the appendix.
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ACS”). For the analysis in this section, we use census tables that report the number of households

residing in each census tract by income bracket. The boundaries of census brackets change over

time so, to make inter-temporal comparisons of residential choices by income, we define alternative

income brackets that are constant in real terms over time. We summarize each constant bracket

m by the median income wm of households within the bracket.17 We drop brackets with median

annual income smaller than $25,000; given the presence of public housing, such households are not

well represented by the model. In the CBSA-level analysis herein, λrq,ct(wm), denotes the share of

households in income bracket m that reside in tracts of area-quality (rq), out of all households in

that CBSA c at time t.

We use data from the National Historical Geographic Information System (NHGIS) 1990 Census

tables to measure 1990 house prices by (r, q)-pairs. Specifically, we start with data on median house

prices within each census tract, and compute a population-weighted median over all tracts within

a given neighborhood type (i.e., within a given (r, q)-pair). We use these 1990 housing prices to

calibrate our baseline model.

Our estimation of ρ, meanwhile, relies on changes in house prices between 1990 and 2014. The

cross-sectional nature of the Census data does not allow us to measure the change in housing costs

for the same set of housing units within a census tract over time. So we instead use Zillow’s 2

Bedroom Home Value Index when measuring changes in housing prices over time within an area-

quality pair (r, q). The Zillow neighborhood house price indices are specifically designed to capture

house price changes over time for a constant set of housing units within a given neighborhood.

Since house prices from Zillow are not available prior to 1996, we proxy for Zillow house prices in

our initial period (1990) using data for years 1996-1998.18 We pool prices for years 2012-2016 for

our end period (2014). Finally, the Zillow indices measure neighborhood house price changes at

the level of zipcodes which are larger than census tracts. We use crosswalks provided by HUD to

map zipcode to census tracts. We then aggregate tracts to area-quality pairs.19 In the CBSA-level

analysis herein, for example, phrq,ct denotes the annual user cost of a median priced 2 bedroom house

in area-quality pair (r, q) within CBSA c at time t.

All nominal variables including income and house prices are deflated to 1999 dollars using the

urban CPI. House prices are converted into an annual user cost using ratios of 5.0 percent in 1990

and 4.6 percent in 2014 from the Lincoln Institute of Land Policy.

17We re-allocate households to these constant brackets assuming a uniform income distribution within each original
bracket. For each interior bracket, wm is equal to its mid-point. We assign the top bracket the median income of that
bracket in the 2000 IPUMS microdata. A full discussion of how we deal with topcoding in this data can be found in
Appendix C.

18House prices were relatively flat over the 1990 to 1995 period suggesting that this measurement issue is unlikely
to bias our results in any meaningful way.

19Given the inherent difficulty of measuring house prices at a small spatial scale in both levels and changes over
time, we perform an extensive set of robustness exercises exploring the sensitivity of our key parameter estimates to
alternate house price data. In particular, our online appendix discusses the replication of estimates of ρ using house
price data from both Census and Zillow, as well as variants of these indices. Our estimates of ρ are similar across a
variety of different house price series.
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3.2 Changes in the Income Distribution and Residential Sorting: Evidence

We now provide empirical support for the sorting mechanism in the model. Our analysis uses data

for 1990 and 2014 and focuses on the 100 CBSAs with the largest 1990 population.

3.2.1 Descriptive Evidence

This analysis aims to test whether changes in a city’s income distribution generate different spatial

sorting patterns for different income groups. As the city gets richer, our model predicts that

richer households move downtown (“urbanize”) relative to the average household, while poorer

households move out (“suburbanize”). A first look at the data supports this prediction. We show

that different income groups display systematically different spatial re-sorting patterns in cities

that exhibit different city-wide income growth patterns. We use cross-city variation to estimate the

correlation between city-wide income growth and spatial sorting for each income bracket m with

the following regression:

∆ ln

(
λD,c(wm)/λD,c
λS,c(wm)/λS,c

)
= αm + βm∆Incomec + νmc , (13)

where ∆
(
λD,c(wm)/λD,c
λS,c(wm)/λS,c

)
is the change in the propensity of households at income level wm to reside

downtown relative to all households in CBSA c between 1990 and 2014. ∆Incomec is one of two

measures of income growth in c during the same time period. The first measure is simply CBSA

average income growth. We could observe average income growth from a neutral rise in income.

The second measure is designed to specifically capture top income growth, as the change in the

ratio between the 95th percentile and the median of the CBSA income distribution. Note that

βm > 0 implies that income group m becomes more likely to reside downtown (relative to other

income groups) in CBSAs that experienced more income growth across all areas.

Figure 2 plots point estimates and 95 percent confidence bands for the βm coefficients from

regressions (13). The left-hand plot shows that richer households urbanized more, and poorer

households less, in CBSAs that experienced more average income growth. The right-hand plot

shows even stronger patterns of urbanization of rich households and surburbanization of poor

households in CBSAs with more top income growth. A 10 percent increase in the 95/50 ratio

of incomes is associated with a 20 percent increase in the propensity of households earning more

than $150,000 to live downtown relative to the average household, and a 10 percent decrease in the

corresponding propensity for households earning less than $40,000. These cross-CBSA correlations

suggest that shifts in the income distribution may be a quantitatively important factor in explaining

the evolution of sorting by income from 1990 to 2014 shown in Figure 1, i.e., in explaining the

relative urbanization of the rich and suburbanization of the poor.
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Figure 2: Correlation between Change in Propensity to Live Downtown and Change in CBSA
Income Distribution by Household Income between 1990 and 2014
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Note: This figure shows income bracket-specific coefficients, along with 95 percent confidence intervals, for regressions
of the propensity of households in that income bracket to reside downtown in a CBSA against a measure of CBSA
income growth. Each income bracket specific regression comes from exploiting cross-CBSA variation with observations
weighted by CBSA population. The independent variable in the left panel is the change in average CBSA income
while the independent variable in the right panel is the change in the ratio of the 95th to the the 50th percentile of
household income in the CBSA. The y-axis shows the income bracket specific regression coefficients and the x-axis
shows median income within each income bracket. All changes are from 1990 to 2014.

3.2.2 Model-Consistent Estimation

The descriptive results above suggest that income growth and sorting by income are associated

across CBSAs, but it still remains to show that this link is consistent with the mechanism proposed

in Section 2, and plausibly causal. We now fill this gap, testing the key sorting mechanism in the

model with an instrumental variable strategy that addresses factors that confound the link between

income growth and spatial re-sorting.

Estimating Equation Equation (8) in the model is key for what we do next. It shows that

household location choice is a simple function of disposable income (income net of housing prices).

In particular, equation (8) implies that any changes in sorting by income are driven solely by

changes in housing prices prq, i.e., by the higher willingness of richer households to pay the higher

cost of locating in more attractive neighborhoods. Put differently, changes in house prices prq

capture all there is to know about how a change in the income distribution in the city will impact

17



sorting. Our empirical strategy is therefore to measure how, across cities, changes in house prices,

driven by changes in income growth, trigger spatial re-sorting by income. To do so, we derive the

following estimating equation from (8), interpreting different time periods and different cities as

different equilibria of the model and taking log differences across two time periods and two pairs

of income groups m and m′ for each CBSA c:

∆ ln
(λDq,c(wm)

λSq,c(wm)

)
−∆ ln

(λDq,c(wm′)

λSq,c(wm′)

)
= ρ
[
∆ ln

(wm − pDq,c

wm − pSjqc

)
−∆ ln

(wm′ − pDq,c

wm′ − pSq,c

)]
+ εc,q,(m,m′) (14)

Normalizing brackets m and m′ such that wm > wm′ , the dependent variable is positive if the

richer income bracket urbanizes faster than the poorer income bracket. The independent variable

is positive when house prices rise faster downtown than in the suburbs. Therefore, if the rich

urbanize faster than the poor in response to house price growth downtown relative to the suburbs,

then ρ will be positive, consistent with the model. In contrast, if sorting patterns were unrelated to

income, we would estimate ρ = 0. Estimating (14) therefore provides a test of our income sorting

mechanism.20 Finally, note that equation (14) is triple differenced - by time, area, and income. So

our estimate of ρ is robust to omitted variables that are time-invariant, or that affects D and S

equally, or that affect every income group equally. There may be, however, confounding factors that

are time-varying, income-biased, downtown-specific, and not captured by our measure of quality.

We now turn to describing these threats to identification in more detail.

Identification Beyond the sorting mechanism that we aim to estimate, there may be other local

shocks that drive both sorting and housing price growth across cities, confounding identification.

Note that any local shocks that are valued equally by all incomes, or whose impact is captured

by a switch in quality level q, will not compromise identification. These shocks are captured

by Brq in the model and controlled for by differencing across income groups m and m′ within

a quality tier in a CBSA. Similarly, income-specific shocks that affect the attractiveness of both

downtown and suburban neighborhoods of a given quality tier in a CBSA will not compromise

identification. These shocks are captured by the common utility shifter (
∑

r′,q′ V
ρ
r′q′(w)) in the

model and controlled for by differencing between the downtown D and suburban S areas of each

CBSA.21 To confound identification, shocks need to be both biased towards either downtown or the

20Without micro panel data we cannot observe how the location choice of a given household changes as their income
w changes. We instead estimate (14) using 45 distinct income-bracket pairs of wm and wm′ for each quality tier j.
We pool our estimation across income pairs and organize the data such that wm > wm′ . As a result, the maximum
number of observations in each of our regressions is 9000, though in many specifications, we have less given missing
data at the CBSA-area-quality triplet. We also remove any observation with w− phcrq < 0 (1.4% of our sample). We

then censor the top and bottom 1 percent of ln

(
w−phcDq

w−ph
cSq

)
in each year.

21Note that taking a difference across two time periods (1990 to 2014) is not necessary from the perspective of
the model. Unlike the other two differences (across income groups and across D,S), the time difference does not
remove a systematic unobserved model component. We prefer to estimate the model in changes rather than in the
cross-section as this estimation strategy illustrates the main sorting mechanism in our model.
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suburbs and income-specific, and not controlled for by our quality levels. Using the terminology

of the model, such a shock would make the attractiveness of neighborhood of type rq income

specific, i.e., equal to Brq(wm) instead of Brq, thus introducing a systematic error term (beyond

measurement error) into equation (14). Denoting the unobserved income-specific component of

neighborhood attractiveness as εrq(wm) = Brq(wm) − Brq, the error in equation (14) is equal

to ∆ ln
(
εDq,c(wm′ )
εSq,c(wm′ )

)
− ∆ ln

(
εDq,c(wm)
εSq,c(wm)

)
. Such shocks could include downtown-biased growth in

amenities by local city planners that are valued more by the high-skilled, like private schooling,

luxury retail, and proximity to high-skilled jobs, or the decline in central city violent crime since

1990 (e.g., Levitt 2004), which may also be valued more by the high-skilled (Ellen et al., 2019). If

these factors make downtowns more attractive to high-income households and drive house prices

up downtown relative to the suburbs, they would bias our estimate of the coefficient ρ upwards.

To overcome this identification challenge, we use an instrumental variable strategy. We instru-

ment for relative changes in house prices using an idea closely related to our theory. First note

that the housing supply elasticity is lower downtown (both by assumption in our model and in the

recent estimates from Baum-Snow and Han 2019). So, CBSA-level income growth will generate

more house price growth downtown than in the suburbs; we verify that this is the case empirically

below. This suggests instrumenting the difference in house price growth between downtown and the

suburbs in equation (14) using a plausibly exogenous CBSA-level income shock. We implement this

idea using a shift-share (Bartik) shock to CBSA per capita income. The Bartik shock predicts the

change in CBSA average earnings by projecting trends in industry-level average earnings observed

elsewhere in the country on each CBSA’s initial industry mix.

The exclusion restriction is that proposed in Borusyak et al. (2021): industry shocks need to be

conditionally exogenous, in the sense that they are uncorrelated with the income- and downtown-

biased error term described above. Specifically, we assume that industries that experienced higher

national wage growth were not initially disproportionately located in CBSAs where downtowns

gained skill-biased amenities relative to the suburbs.

This exclusion restriction may be violated if the industries that experienced higher national

wage growth are themselves both downtown- and skill-biased. For example, if tech firms employ

high-skilled individuals and are initially over-represented downtown, then national wage growth in

tech could attract high-income individuals downtown. To address this concern, we show that our

results are robust to excluding various sets of industries that are either downtown- and/or skill-

biased. First, we exclude the top quartile of downtown-biased industries from the computation of

our Bartik shock. Specifically, we remove industries in which residents of urban areas are most likely

to work.22 This isolates wage growth in suburbanized industries to instrument for relative house

price growth downtown. Second, we recompute a Bartik instrument leaving out tech industries and

then separately finance, insurance, and real estate (FIRE) industries. These industries dispropor-

22To do so, we first rank industries by the share of their workers that lives downtown. Then, starting from the
industry with the most urbanized workers, we remove industries entirely from our Bartik computation until 25 percent
of all workers have been removed. We then renormalize CBSA-level industry shares so they are relative to total CBSA
employment excluding these downtown-biased industries.
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tionately employ higher skilled workers. As we highlight below, all three alternative instruments

yield similar results to our main instrument. We interpret this as further evidence, consistent with

recent research, that access to jobs is not driving the recent in-migration of high-income individuals

into urban centers.

Finally, we conduct pre-trend and balance tests similar to those proposed by Borusyak et al.

(2021), and find no evidence of pre-trends or balance violation. A full discussion of these results

can be found in Appendix D.

Identifying Variation Before estimating ρ using equation (14), we illustrate the variation in

the data that allows for identification. We first verify that, in line with the logic above, the

Bartik income shock raises house prices more downtown than in the suburbs. To illustrate this

variation, we plot our Bartik shock between 1990 and 2014 for each CBSA (on the x-axis) against

∆ ln(phDq,c/p
h
Sq,c) (on the y-axis) in the left panel of Figure 3. There are 200 observations in the

figure: 2 quality tiers within each of our 100 CBSAs. We find that within each quality tier, a

more positive income shock raises housing prices downtown relative to the suburbs. This variation

underlies the significant first-stage statistic in our estimation of ρ below.

Next, we report the reduced-form regression of change in spatial sorting directly on the Bartik

shock. To simplify the presentation, we pool quality tiers and show the results of the following

regression for each of our 10 income brackets:

∆ ln

(
λD,c(w)/λD,c
λS,c(w)/λS,c

)
= αw + βw∆ ̂Incomec

Bartik
+ νwc . (15)

This regression is exactly the same as our descriptive regression (13), except that the Bartik

income shock replaces actual income growth. In equation (15), βw > 0 implies that following a

positive CBSA Bartik shock, the propensity of income group w to live downtown rises relative to

that of the average CBSA resident. The right panel of Figure 3 reports estimates from equation

(15), along with their 95 percent confidence bounds. We find that a CBSA income shock causes

differential spatial sorting responses from the rich vs. the poor. In particular, rich households are

more likely than poor households to move downtown in response to an income shock. For all the

top five income groups, βm > 0 and all estimates are statistically significant at the 5 percent level.

Conversely, all the bottom five income groups have estimates of βm < 0, with all but the middle

income group estimate being statistically significant.

To summarize, Figure 3 provides reduced-form evidence consistent with the key mechanism in

our model. As CBSA income increases, house prices grow faster downtown, and richer households

are more likely to re-sort downtown relative to poorer households.

Estimates of ρ Having clarified the variation that identifies (14), we are now ready to estimate

ρ – the parameter that governs the intensity of income-based sorting. Our baseline results are

reported in the first two columns of Table 1. Column 1 shows an OLS estimate, and column

2 shows an IV estimate using the Bartik instrument. We weight both OLS and IV regressions
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Figure 3: Identifying Variation for ρ
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y-axis, against the Bartik income shock between 1990 and 2014 on the x-axis for each of the largest 100 CBSAs. The
house price data is from the Zillow 2 Bedroom Index in 1996-1998 and 2012-2016. We drop the top and bottom 1%
of ∆(phDq,c/p

h
Dq,c) from the plot. On the right, we show income bracket-specific coefficients, along with 95 percent

confidence intervals, from equation (15) on the y-axis (regression of Bartik income shock on changes in normalized
urban share from 1990 to 2014), against median income within each income bracket on the x-axis. Both panels show
CBSA population weighted-regression coefficients

by the number of observations in each cell. This downweights cells with fewer individuals where

measurement error may be higher.

Our OLS estimate is somewhat lower than our IV estimate (2.48 vs. 3.04), but we cannot reject

that they are the same. Our instrument has strong first stage predictive power with an F-stat of

26. Columns (3)-(5) show IV estimates for alternative Bartik shocks that exclude urbanized, FIRE,

and Tech industries. These estimates are similar to our base results, ranging from 2.3 to 3.2. This

suggests that our instrument is not correlated with labor demand shocks that are concentrated in

urban centers of CBSAs and that disproportionately affect high-income households. In Appendix

D we shows further robustness of our estimates of ρ to many different specifications, including

different time periods, different house price measures, different definitions of downtown area, and

different quality cut-offs. These robustness estimates are almost all within two standard error bands

of our preferred estimate.

To summarize, we use our preferred IV estimate in column 2 and set ρ = 3.0 in our model

calibration. As we show later, ρ is an important parameter determining our welfare results. In our

counterfactual exercises we show the sensitivity of our results to alternate values of ρ between 1.5

and 4.5 which encompass roughly the two standard deviation bands of our estimate in column 2.

As an additional robustness exercise, we show that residential amenities – as measured by

restaurant quality – also increased more in downtown areas relative to the suburbs in response to

CBSA income growth. The endogenous response of amenities to the changing income distribution
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Table 1: Estimation of elasticity ρ

(1) (2) (3) (4) (5)

ρ̂ 2.48 3.04 2.69 2.26 3.20
(0.34) (0.70) (0.76) (0.76) (0.87)

Instrument None Base Omit Omit Omit
Top Urban FIRE Hi-Tech
Industries Industries Industries

R2 0.21
KP F-Stat 26.3 16.0 15.6 19.0

Obs 5,878 5,878 5,878 5,878 5,878

Notes: This table shows estimates from equation (14). Data from 100 largest CBSAs where neighborhood quality
defined from education mix of residents. Each observation is weighted by the number of households in the income
bracket. Column 3 to 5 also control for share of omitted industries. KP F-Stat = Kleibergen-Paap Wald F statistic.
Standard errors clustered at the CBSA-quality level are in parentheses for column (1)-(5).

is a key amplification mechanism in our model. To conserve on the space needed to introduce our

restaurant quality index, we relegate these results to Appendix E.

4 Model Quantification

Having established the empirical relevance of the key model mechanism and provided a micro-based

estimate of ρ, we now turn to quantifying the remaining structural parameters of the model. We

do so in two stages. In a first stage, we quantify the model elasticities. In a second stage, we use

the method of moments to calibrate the parameters of the model that govern the levels of prices

and amenities, conditional on model elasticities. We refer the reader to the online appendix for the

full details of the procedure.

4.1 Model Parametrization

Table 2 lists the model’s seven elasticities that we estimate or calibrate in the first stage. This

includes ρ, whose estimation was described above. We discuss the calibration of each of the re-

maining parameters briefly here. The role played by these parameters in driving sorting patterns

and welfare results is discussed in detail in Section 5. All of the parameters selected here are for our

baseline calibration. We explore robustness over a range of values for each parameter in Section 7.

Land Supply Elasticities (εS and εD) In the model, the area-specific elasticity of land supply

(εr) directly translates into an elasticity of housing supply. We calibrate εD and εS to match the

Saiz (2010) housing supply elasticity estimates for cities that have an average household density

similar to that in our representative downtown and suburban areas. This yields ε̂D = 0.60 and

22



Table 2: Key Model Parameters

Parameter Description Value Source

Non-homotheticity

ρ Between-type neighborhood substitution elasticity 3.0 Estimation

Land Price Responses

εD Downtown land supply elasticity 0.6 Calibrated to Saiz (2010)
εS Suburban land supply elasticity 1.3 Calibrated to Saiz (2010)

Amplification

γ Within-type neighborhood substitution elasticity 6.8 Literature

Other

TD Downtown local property tax 0.2 IPUMS 2000
TS Suburban local property tax 0.3 IPUMS 2000
Ω Public amenity supply elasticity 0.05 Literature

ε̂S = 1.33. These numbers are roughly similar to the recent within CBSA housing supply elasticises

estimated in Baum-Snow and Han (2019).

Key Amplification Parameter (γ) Income sorting (governed by ρ) is amplified in the model

by endogenous neighborhood development. The intensity of this effect is governed by the shape

parameter γ, which controls gains from variety in residential neighborhood choice. Ahlfeldt et al.

(2015) estimate a within-type neighborhood substitution elasticity of 6.8 using detailed micro data

from Germany. For our baseline calibration, we use the Ahlfeldt et al. (2015) estimate and set

γ = 6.8. Given that the elasticity of substitution across neighborhoods of a given quality estimated

in Germany many not map exactly to the preferences of Americans, we show the sensitivity of our

results to alternate values of γ.

Public Amenities (TD, TS, Ω) We calibrate local taxes (Tn) to match the unit-level average

real estate taxes paid as a share of annualized housing costs in 2000, using tract-level data from the

2000 Census. This implies a local property tax rate as a fraction of the annual user cost of housing

of 30% in the suburbs and 20% downtown. We set the elasticity of the endogenous component of

the public amenity with respect to these tax revenues (Ω) to 0.05 (Fajgelbaum et al., 2018).

Homeownership (χ(w)) In our benchmark model, we assume that all housing rents in the city

(land rents and fixed costs of development) accrue to an absentee landlord and none are transferred

to the city residents, i.e., that χ(w) = 0 for all w. In our counterfactual analysis, however, we

want to be able to account for the heterogeneous rate of home ownership in contributing to spatial

sorting responses, in order to allow households who own their home to reap the benefits of rising
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house prices. To do so, we discipline χ(w) by transferring to households at each labor income level

capital gains corresponding to their average real estate portfolio. This transfer equals the average

house price growth in the neighborhoods where households of that income lived in the previous

period, which is then scaled by the share of households who were homeowners according to the

2000 IPUMS data. Empirically, this share of home ownership increases systematically with labor

income.

4.2 Second Stage: Method of Moments

Armed with estimates for the key elasticities of the model, we conclude the calibration of the model

using a method of moments to estimate two key vectors of composite model parameters: (i) the

relative amenity composite of each neighborhood type N
1
γ
rqBrq, and (ii) the price of housing in each

neighborhood type prq, which together pin down the calibrated values for location choices {λrq(w)}
at all levels of income w in the baseline equilibrium. The procedure does not separately identify

all of the structural parameters of the model that shape these composites. But these composite

parameters are just sufficient to compute any counterfactual equilibrium of the model.

We target two sets of moments that summarize the key economic concepts we aim to capture:

(i) the 1990 distribution, by income level, of the share of workers living downtown (i.e., the U-

shape sorting patterns presented in the introduction), and (ii) the 1990 level of house prices by

neighborhood type. To accurately capture the location choices of higher-income households, we

target the downtown share of households at a finer income grid than the Census income brackets

represented in the introduction. To this end, we construct the same plot as Figure 1 but for finer

$5,000 income brackets (in 1999 dollars) using the micro IPUMS data. The additional detail in the

income dimension comes at the expense of precision in the spatial dimension and, as a result, we are

limited to studying 27 CBSAs of our original 100 in the calibration and counterfactual exercises.23

We perform this calibration and counterfactuals for a representative city that is an average of these

27 CBSAs. The U-shape patterns of residential sorting for these 27 CBSAs are very similar to the

U-shape patterns documented in Figure 1.

The identification of the model in this second stage is quite straightforward. First, house price

moments directly inform the calibration of prq. Then, conditional on prices, the U-shape pattern

of the location choice data helps identify the relative attractiveness N
1
γ
rqBrq of different types of

neighborhoods, by a revealed preference approach applied to our non-homothetic demand function:

the same level of price and quality of a neighborhood generates different demand patterns at

23The IPUMS data identifies the locations of respondents at the PUMA (Public Use Microdata Area), each of
which contains approximately 100,000 individuals, relative to the 4,000 contained in each Census tract. To replicate
the urban share for each fine income brackets, we first construct a cross-walk between PUMAs and our tract-based
downtown areas. There are 27 CBSAs in which PUMAs are small enough relative to the downtown definition so as
to allow for useful inference here. See Appendix C for more details.
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different levels of income. Concretely, the identification relies on the equation:

λD (w)

λS (w)
=

∑
q=L,H N

ρ
γ

DqB
ρ
D,q [w − pD,q]ρ∑

q=L,H N
ρ
γ

SqB
ρ
S,q [w − pS,q)]ρ

.

Given w, the calibration backs out the N
1
γ
rqBrq and prq that allow to best match the distribution

of location choices in the data. The vectors are pinned down up to a normalization level, whose

value does not impact the counterfactuals done in the following section.

Moment Fit. The moment fit is presented in Figure 4. Since the model is over-identified, neither

moment can be matched perfectly. The procedure trades-off a better fit of the U-shape for location

choices against a better fit for housing prices. Despite a sparse specification, the calibrated model is

able to match the rich non-monotonic U-shape patterns of location choice by households of various

incomes remarkably well. The model also matches the relative housing prices between downtown

and suburban high and low-quality neighborhoods. In 1990, the model and Census data house prices

in low-quality downtown neighborhoods and in the suburbs are close. Both the model and data

have high-quality suburban neighborhoods having housing prices being about 3 times higher than

low-quality suburban neighborhoods. Importantly, both the model and the data have downtown

high-quality neighborhoods being being between 4 and 5 times higher than low-quality downtown

neighborhoods.

Figure 4: Calibration to 1990 Urban Shares and Neighborhood Prices

Notes: These figures show the fit of the calibrated model to the two targeted moments. The left-hand plot shows
the share of households in each $5,000 income bracket that reside downtown in 1990. The dashed line shows the
data, while the solid line shows the prediction of the calibrated model. The data are constructed from micro IPUMS
data and reflect the propensity to reside downtown by income in the 27 CBSAs in which PUMAs (the finest spatial
unit the IPUMS data) are small enough relative to the downtown definition to make useful inference here. The
curve is interpolated to address top-coding in the IPUMS data. See Appendix C for more details. The clear bars in
the right-hand plot shows the average Census house price in tracts of each location-quality type, normalized by the
average index in low-quality tracts downtown, in 1996. The solid red bars show the predicted relative housing costs
predicted by the calibrated model.
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5 Income Growth and Changing Spatial Sorting

Armed with our quantified model, we now turn to our main question of interest. Using counterfac-

tual analysis, we gauge the extent to which a change in the income distribution in the city (F (w))

can help rationalize the observed changes in spatial sorting within the city. We start by analyzing

the 1990-2014 period before turning to 1970-1990 and 1950-1970.

Given the structure of the model, a counterfactual equilibrium can be computed with the

following parameters on hand, as detailed in Appendix G: (i) the model elasticities {ρ, γ, εr,Ω},
and (ii) the initial equilibrium values for population in each neighborhood type and house prices

as calibrated above. Given that the model is over-identified, the baseline model matches the 1990

data imperfectly. We treat the log-differences between data and model as measurement error, and

hold it constant across periods when we conduct counterfactuals.

5.1 Baseline counterfactual: 1990-2014 change in income distribution

Between 1990 and 2014, the income distribution of the largest CBSAs became more unequal,

mirroring the patterns documented for the economy as a whole. Panel A of Figure 5 summarizes

this change plotting the percentage change in income between 1990 and 2014 for each income decile

in the representative city made of 27 large CBSAs that we used to calibrate the model above.

Inflation-adjusted income per capita grew on average by 10%. For the bottom decile, however,

income actually fell slightly by approximately 1 percent, while for the top decile, income increased

by about 18 percent. Overall, the 90-10 income gap widened by 19 percentage points.

How much did this change in income distribution, in isolation, contribute to changes in spatial

sorting within cities? We use the quantified model to answer this question. We compute the coun-

terfactual spatial equilibrium that corresponds to the 2014 income distribution, without changing

any other parameters of the model. We then compare sorting in this model-based counterfactual

to that in the actual spatial equilibrium in 2014. In Panel B of Figure 5, the clear wide bars show

the actual empirical change in the propensity to live in downtown areas between 1990 and 2014

for each decile of the income distribution, summarizing the shift in the U-shape of Figure 1. The

skinnier solid red bars show the changes predicted by the model in response to the shift in the

income distribution.

In the model, the 1990-2014 change in the income distribution generates a shift in location

choices that matches the general trend we observe in the data. High income households move

downtown, while low-income households move out of downtown. The predictive power of the income

shock alone is substantive: it explains about 40 percent of the suburbanization of the bottom decile

of the income distribution, and about 60 percent of the urbanization of the top income decile. The

income shock does less well at explaining the changing location choices of individuals in upper-

middle income deciles. This suggests that factors aside from the changing income distribution are

also quantitatively important in determining the changing location choices of residents of large
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Figure 5: Counterfactual change in sorting from shift in income distribution

Panel A: Change in Income Panel B: Change in Share
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Notes: Panel A shows income growth between 1990 and 2014 by income decile for the 27 CBSAs used to calibrate
our model. This panel summarizes the shift in the income distribution that we feed into the model. Panel B shows
the change in the propensity to live downtown resulting from the change in the income distribution by income decile
(solid red bars). The clear bars show the change in the propensity to live downtown between 1990 and 2014 by income
decile in the data.

cities.24

5.2 Tests of Model Predictions

We perform two model validation exercises. First, we go further back in time and ask whether shifts

in the income distribution in 1950-1970 and 1970-1990 can speak to changes in spatial sorting

patterns during these periods, as they do in our 1990-2014 baseline counterfactual. Second, we

replicate our baseline calibration and 1990-2014 counterfactual one-by-one for each of the CBSAs

that make up the representative city in our baseline analysis and use the results to study whether

the model can reproduce salient differences in spatial sorting across CBSAs from 1990 to 2014.

5.2.1 Predictions Going Backwards in Time: 1970 and 1950 Counterfactual

In this exercise, we feed the 1950 and 1970 income distributions into the baseline model, calibrated

to 1990, and compute the model predictions for the effect of changes in income inequality on spatial

sorting between 1950 and 1970 and then 1970 and 1990.25 Incomes unambiguously grew in the

24Note that the predicted urbanization of the highest income decile reflects both a shift along the calibrated U-
shape of Figure 4 as well as an endogenous uptick in the U-shape, generated by the change in the income distribution.
In the appendix we also show that the model also explains a significant portion of the observed uptick itself.

25The 1950 and 1970 income distributions we feed into the baseline calibration are based on the IPUMS microdata
for the set of 27 cities included in our calibration. As we did with our base specification, we interpolate the aggregate
income distribution across these cities above the respective top-codes for each year using the generalized Pareto
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1950-70 and 1970-90 periods, as the top panel of Figure 6 shows. Specifically, during these periods,

the fraction of households with low income uniformly decreased while the fraction of households

with higher incomes uniformly increased. The orange bars in the lower panel of Figure 6, meanwhile,

show that, through the lens of the model, this income growth generated different changes in sorting

from 1950-1970 and 1970-1990 than that predicted in our main counterfactual for 1990-2014. For

example, our model predicts lower income individuals urbanized and higher income households

suburbanized during the 1950-1970 period. Additionally, the model predicts little change in spatial

sorting patterns by income during the 1970-1990 period. These patterns contrast with the large

amount of higher income households moving into downtown areas predicted by our model during

the 1990-2014 period.

These results reflect that income growth during a given period is not a sufficient condition to

cause high-income households to disproportionately move downtown. What then does generate the

change in sorting patterns in response to the income growth during the different time periods? The

difference stems from where the income growth takes place in the income distribution. Specifically,

the shifts in the income distribution in earlier decades were less skewed towards the very rich (in

absolute levels) than the 1990-2014 shift. The high-income bracket seeing the largest growth in

population share was $50,000-75,000 from 1950-1970, $100,000-125,000 from 1970-1990, and then

$125,000-150,000 from 1990-2014. In the 1950s and 1960s, the income growth of higher income

households primarily occurred on the downward portion of the U-shape; as a result, our model

predicts the suburbanization of high-income households during this period. This prediction is

consistent with the data over the same period (shown in the clear bars). Conversely, in the 1970s

and 1980s, the income growth for high-income households occurred around the bottom of the U-

shape implying only a small change in urbanization rates for these households during this period.

Again, this is roughly consistent with actual empirical spatial sorting patterns by income during this

period. Finally, between 1990 and 2014, the top income growth shifted households away from the

suburban middle of the U-shape and towards the urbanized upward sloping portion of the U-shape

and, accordingly, the model predicts the shift of higher-income households downtown. Collectively,

these results show that the model can successfully predict different dynamics of changes in spatial

sorting patterns by income, depending on where in the income distribution income growth takes

place.

5.2.2 Cross-CBSA Predictions

As a second validation exercise, we assess whether the model can match the salient heterogeneity

in the changes in residential sorting patterns across cities. To that end, we re-calibrate the model

separately for individual CBSAs (rather than for a representative city as in the baseline). We allow

CBSAs to differ from each other in their initial 1990 income distribution and initial spatial sorting

patterns, in the change in their income distribution between 1990 and 2014, and in their land

supply elasticities (εD and εS). The other parameters in Table 2 are assumed to be identical across

method, as described in the Appendix C.
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Figure 6: 1950 and 1970 Counterfactuals

Panel A: Change in Income Distribution

Panel B: Change in Share Living Downtown

Notes: Panel A shows the change in the share of the population in each income bracket in the 27 CBSAs modeled in
our calibration between 1950 and 1970 (left), 1970 and 1990 (middle), and 1990 and 2014 (right). The corresponding
plots in Panel B show the change in the share living downtown for each income bracket as observed in the data (clear
bars) and as predicted by the model (orange bars). Income brackets are reported in 1999 dollars.

CBSAs. For each CBSA, we calibrate the model by targeting the 1990 distribution of location

choice by income within the CBSA, and then compute the model’s prediction for how the CBSA’s

spatial sorting patterns change in response to the actual change in the CBSA income distribution.

We then compare the predictions of the model to the empirical changes in residential sorting within

each city.

Figure 7 compares the cross-CBSA heterogeneity in spatial sorting predicted by the model

with that observed in the data using a simple summary statistic: the propensity of households

with incomes higher than $100, 000 to reside downtown relative to the average household. The plot

compares the change in the share of households with incomes above $100, 000 that reside downtown
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between 1990 and 2014 in the data to the corresponding change predicted by the model in response

to the CBSA-specific shock to the income distribution over the same time period.26 The results

show that, through the lens of the model, CBSA-level changes in the income distribution explain

CBSA-level changes in spatial sorting of high-income individuals quite well. The CBSAs predicted

by the model to have a large relative increase in high-income individuals residing downtown are

actually the ones where we observe such an increase empirically.

Figure 7: 1990-2014 Change in the Urban Share of Households Earning Above $100,000 Less the
Average Urban Share
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Notes: This figure plots the change in the share of households earning above $100,000 (in 1999 dollars) that reside
downtown between 1990 and 2014, as predicted by the model for each CBSA vs. as observed in the data over the
same period.

We conclude from these out-of-sample analyses that the model does quite well at matching time

series changes for a representative CBSA as well as cross-CBSA heterogeneity. We view this as

a strong test of the model’s implications linking the growth in income at the top of the income

distribution with the influx of the rich into downtown neighborhoods within a CBSA. In particular,

many national stories that could be confounding our baseline results get differenced out in the

cross-CBSA analysis.

6 Welfare and Policy Implications

Having established the model’s ability to reproduce salient empirical sorting patterns, we turn

to using the model to analyze the normative implications of changes in urban spatial sorting.

We first use the model to assess the well-being consequences, for different income groups, of the

neighborhood change and spatial re-sorting triggered by top income growth between 1990 and 2014.

26For this analysis, we can only use 13 of 27 CBSAs. These are the CBSAs for which there is sufficient coverage
above the state-specific IPUMS income topcodes to implement the generalized Pareto interpolation procedure that
we use to measure CBSA-level income distributions and U-shapes.
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In doing so, we highlight the economic forces within the model that drive welfare differences across

groups. We end this section by discussing the effectiveness of policies aimed at mitigating these

changes in spatial sorting.

6.1 Changes in Welfare Inequality

The framework in Section 2 delivers the following function for the representative utility of a house-

hold with income w:

V (w) =

∑
r′,q′

V ρ
r′,q′(w)

1/ρ

. (16)

where Vrq is the inclusive value of all neighborhoods of type (r, q) defined in (4). We quantify

the change in welfare between 1990 and 2014 by income decile, using a related dollar-denominated

measure - compensating variation - as follows:

CV (i) = m2 (i)−m2

(
V −1

2 (V1(m1 (i)))
)
,

where mt(i) is income of percentile i in equilibrium t. CV (i) reflects changes in well-being associated

with not only changing income, but also changing housing costs and changing endogenous amenity

quality. To isolate the welfare gains due to changing housing costs and amenity quality alone, we

simply subtract the income growth of a given percentile i from their welfare (i.e., CV) growth:

∆Wc(i) =
CV (i)− (m2(i)−m1(i))

m1(i)
.

Whenever ∆Wc(i) > 0, income growth understates the increase in well-being at percentile i.

Figure 8 reports our headline welfare results for each income decile. It shows the welfare

gains from within-city spatial sorting triggered by the 1990-2014 income shift. The left panel

averages results between homeowners and renters, while the right panel isolates the effects on

renters. Focusing first on the average results by decile, we find that the spatial sorting response

amplifies the differences in well-being between the rich and the poor during this time period. In

the top decile of the income distribution, well-being grew more than income, by an additional 3.2

percentage points. As high earners move downtown, the supply of high-quality neighborhoods that

they value rises endogenously, making them better off. House prices increase as well, but for high

earners the amenity benefit of neighborhood change dominates the price effect. In contrast, at the

bottom of the income distribution, households’ well-being is hurt by the same house price increases

without the same compensatory neighborhood variety benefits. As a result, well-being changes are

even more negative than income changes in the bottom decile, by an additional 0.4 percentage

points. Overall, the well-being gap between the top and bottom deciles of the income distribution

grew by an additional 3.6 percentage points, compared to the 19 percentage point growth in the

nominal income gap. That is, within city spatial sorting amplifies the growing welfare gap between
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Figure 8: Welfare Changes From Spatial Sorting Response to Changing Income Distribution

All Households

1 2 3 4 5 6 7 8 9 10

1990 Income Decile

-1

0

1

2

3

4

(C
V

 -
 

 I
n
c
o
m

e
)/

In
c
o
m

e
1

9
9

0
 (

%
)

Renters Only

1 2 3 4 5 6 7 8 9 10

1990 Income Decile

-1

0

1

2

3

4

(C
V

 -
 

 I
n
c
o
m

e
)/

In
c
o
m

e
1

9
9

0
 (

%
)

Notes: This figure shows the percent welfare growth that households in each income decile are predicted to receive,
above and beyond income growth, between the 1990 and 2014 model equilibria. The left-hand panel shows results
averaged across homeowners and renters; the right-hand panel focuses on renters only.

the rich and the poor from rising income inequality by almost 20 percent (3.6/19).

Comparing the welfare results for all households in the left panel of Figure 8 with those for

renters only in the right panel, we see that capital gains from house price appreciation benefits

households at all income levels, to some extent. For example, about 30 percent of individuals from

the lowest income decile who resided downtown in 1990 owned their home, limiting the negative

welfare effects of spatial re-sorting. Without this effect – i.e., for renters only – welfare losses of

low-income households are much larger. Renters in the bottom decile experienced a 0.7 percentage

point reduction in their welfare stemming from the changing spatial sorting that resulted from the

shift in the income distribution. At the top of the income distribution, the amenity benefit of

neighborhood change is strong enough that high-income renters still gain from gentrification, in

spite of facing the full brunt of the housing cost growth. They see a 1.8 percentage point growth

in welfare.

Before analyzing the main mechanisms at play behind these findings, it is worth commenting

on the magnitudes of these welfare effects. Figure 8 implies that a renter in the first decile of

the income distribution - earning on average $30,000 per year - is made roughly $210 worse off

per year in consumption equivalent terms. There are two reasons for this relatively small overall

welfare impact. First, the largest welfare losses from an influx of rich households are concentrated

on downtown residents, i.e., only 15 percent of individuals earning $30,000 per year live downtown.

If we isolate the most impacted group, low-income renters who remain downtown, we find a welfare

loss that is three times larger, at $630.27 To put that number in perspective, it represents roughly

27We only take into account changes in amenities and prices for these households, holding constant their idiosyn-
cratic preference shocks for location.
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one month’s rent for these households. Second, note that we isolate the effect of a change in the

income distribution, holding population constant. In reality, population grew a lot in these large

CBSAs between 1990 and 2014. Including this population growth along with the changes in the

income distribution further amplifies the welfare losses of low-income renters by a factor of five.28.

This large magnitude is commensurate with the current policy interest in alleviating the impact of

downtown gentrification on this group.

6.2 Mechanisms

Two main mechanisms drive our sorting and welfare results. The first is the price mechanism

that operates through land markets. As the rich get richer, they move downtown to live in high-

quality neighborhoods, and to enjoy consumption amenities there. This influx of rich households

puts upward pressure on downtown housing prices not only in high-quality neighborhoods, but

also in low-quality ones. The left-hand panel of Figure 9 compares these house prices changes,

for different neighborhood types, to those observed in the Zillow data. The model predicts that

the shift in the income distribution alone generates a 6 percent increase in house prices in high-

quality downtown neighborhoods and a 3 percent increase in house prices in low-quality downtown

neighborhoods. These predicted increases in downtown house prices amount to about 20 percent

of the actual increases observed in the data, which again suggest that other factors (like general

CBSA population growth) contribute to house price growth. Housing supply is more elastic in

the suburbs than downtown, so the model predicts that house prices increase more in low-quality

areas downtown than in low-quality areas in the suburbs (3% vs 1%). This matches the data

qualitatively where house price growth between 1990 and 2014 was higher in low-quality downtown

neighborhoods than in low-quality suburban neighborhoods. House price growth in low-quality

neighborhoods downtown contributes importantly to the welfare losses of the poor renters who

remain downtown.

The second key mechanism behind our results is endogenous supply responses and neighbor-

hood change. As the rich move downtown and demand for high-quality neighborhoods increases,

developers supply more high-quality neighborhoods. Some of this entry is at the cost of exit of

lower quality neighborhoods, so that gentrification takes place. The right-hand panel of Figure 9

shows the growth in supply of neighborhoods in each area and quality level. The model predicts a

large proportion of the downtown neighborhood change observed in the data (measured as changes

in the number of constant geography Census tracts classified as low and high quality, respectively).

Given love of variety preferences, the additional entry of high-quality neighborhoods downtown

makes high-income households better off.

Overall, the contraction in the number of low-quality neighborhoods – the gentrification that

we also observe in the data – makes low-income households worse off. Finally, we note that the

28In the appendix, we explore counterfactuals where we also also allow the population to evolve as is does in the
data. In these counterfactuals, not only is the share of richer individuals increasing but the absolute level of richer
households are allowed to increase due to population growth. As a result of population growth, our gentrification
results are amplified given that there are even more high-income households who want to move downtown in 2014.
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Figure 9: Mechanisms

Notes: This figure shows the change in housing costs (on the left) and neighborhood variety (on the right) in each of
the four neighborhood types between 1990 and 2014. Red bars are model and wide clear bars are data. Consistent
with the model, the change in housing costs are measured in the data for the subset of tracts that maintain the same
quality assignment between 1990 and 2014. We measure the change in house prices as the change in the median
Zillow 2-bedroom house price index for each neighborhood type between 1996 and 2014.

predicted supply of high-quality neighborhoods also expands in the suburbs, but at a much smaller

rate than downtown.

We can use the model to separately quantify the contribution of the price and amenity mech-

anisms to our welfare results. To that end, we compute a counterfactual that shuts down love-of-

variety effects across neighborhoods by setting the between-neighborhood substitution elasticity, γ,

to infinity. In this counterfactual, prices respond to changes in the income distribution, but the

sorting and welfare effects of these price responses are not amplified by responses in neighborhood

(or associated consumption amenity) variety. Welfare results are shown in Figure 10 (solid red

bars) and contrasted with our baseline quantification (clear bars). The welfare gap across income

groups is mitigated substantially when the love of variety effects are shut down, from 3.6 percentage

point in the baseline to 1.1 percentage points without love of variety effects. About two-thirds of

the welfare gap in our base results stems from the endogenous private amenities response. The

absolute welfare losses for the bottom decile are unaffected, as price increases are not compensated

by the gains in consumption amenities that accompany the influx of the rich. Shutting down love

of variety effects almost completely eliminates the welfare gains of the rich but does not stem the

welfare losses experienced by the poor.
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Figure 10: Shutting Down Amplification

Notes: This figure shows the percent welfare growth that households in each income decile are predicted to receive,
above and beyond income growth, between the 1990 and 2014 model equilibria. The left-hand panel shows results
averaged across homeowners and renters; the right-hand panel focuses on renters only. The clear bars show the results
from the baseline calibration and counterfactual where the neighborhood and amenity love of variety parameters (γ
and σ) are equal 6.5. The red bars show the welfare results from an alternative calibration and counterfactual where
love of variety is shut down by setting these parameters to both equal infinity.

6.3 Gentrification Curbing Policies

Changes in spatial sorting in large US cities have led to a new policy debate on gentrification

and housing affordability. In this subsection, we use our model to analyze the potential impact of

policies that aim to shape the spatial sorting of heterogeneous households within the city.

Taxing developments We first model a stylized “anti-gentrification” policy, which systemati-

cally taxes high-quality housing downtown, and uses the proceeds to subsidize rents in low-quality

neighborhoods downtown (the policy is budget neutral). It aims to limit the development of high-

quality neighborhoods downtown while helping poorer households to remain located downtown. We

compute the counterfactual 2014 spatial equilibrium with a tax on high-quality housing downtown

of t = 5%.

Panel A in Figure 11 reports the results and contrasts them with our baseline 1990-2014 counter-

factual, in order to evaluate how much such a policy would have curbed the gentrification triggered

by changes in the income distribution. The left panel shows that the policy stems part of the gen-

trification of downtown neighborhoods: the inflow of high-income households downtown is curbed

(solid bars), as is the outflow of low-income families, compared to baseline (clear bars). The policy is

also effective at stemming part of the land price increase downtown, and limiting quality changes.

To the extent that governments intrinsically value social diversity within their downtowns, this

simulation suggests that such an anti-gentrification policy can help maintain that target.
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Figure 11: Location Choices and Well-Being under “Anti-Gentrification” Policy

Panel A: Taxing High-Quality Development Downtown

Panel B: Taxing High-Quality Development Downtown and in the Suburbs

Notes: This figure shows the percent change in the propensity to live downtown (on the left) and change welfare
(on the right) that result from the change in the income distribution by income decile. The clear bars show the
results from the baseline counterfactual. The blue bars show the results from the alternative counterfactual in which
development of high-quality neighborhoods and the proceeds of the tax are redistributed to subsidize housing costs
in low-quality neighborhoods in the same location. In Panel A, only downtown high-quality neighborhoods are
taxed (and low-quality rents subsidized). In Panel B, high-quality neighborhoods are taxed (and low-quality rents
subsidized) both downtown and in the suburbs.

The well-being effects of this policy, shown in the right hand plot of Panel A in Figure 11

are, however, much more muted. The policy hardly changes at all either the welfare of high-

income households or the welfare losses of low-income households. The policy fails to significantly

reduce the losses of low-income households because taxing high-quality development downtown

shifts gentrification – i.e., neighborhood quality and price growth – from downtown to the suburbs.

As a result, low-income households living in the suburbs experience greater welfare losses relative to

baseline. On net, the welfare losses are simply transferred from residents of low-quality downtown
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neighborhoods to residents of low-quality suburban neighborhoods.29

Panel B of Figure 11 below shows the impact of an alternative policy that taxes high-quality

neighborhood development (and subsidizes rents) both downtown and in the suburbs. This policy

has a much stronger progressive effect than the downtown-specific development tax and rent subsidy,

largely because a larger share of the population resides in the suburbs. Interestingly, this policy

does not limit changes in sorting much, and does not stem gentrification. This is because the

tax on high-quality development and subsidy on low-quality housing costs is implemented both

downtown and in the suburbs. Therefore, intuitively, changes in relative housing costs (and the

amount of high-quality development) are qualitatively similar across the two locations. However,

the policy does mitigate inequality. This is not surprising given the policy - by design - is taxing

high incomes and distributing the proceeds to low-income households. The endogenous change

in amenities stemming from the changing spatial sorting response still makes the rich better off

despite them being taxed more. The poor are made better off through the redistribution which is

sufficient to compensate them for their increased rental payments in downtown neighborhoods.

Regulatory constraints on housing supply Finally, we shed light on a policy that has been

widely proposed by economists to address the regressive welfare impacts of rising housing costs:

relieving regulatory housing supply constraints. Housing regulations do not feature directly into

our model, they are instead indirectly captured by the housing supply elasticities that we use

in calibration. We now report the effect of quadrupling the elasticity of housing supply both

downtown and in the suburbs. Figure 12 shows that doing so does little to stem neighborhood

change downtown (in the left panel) but it mitigates the associated welfare losses on the poor

(in the right panel). House price growth is reduced by approximately 2 percentage points in all

neighborhoods, and effectively shut down in the low-quality neighborhoods. The benefits of this

slowed house price growth mostly accrue to the poor – the lowest income decile’s welfare loss is

essentially eliminated. Welfare inequality continues to grow, however, because the rich still gain

from increased neighborhood variety that persists even with the increased elasticity of housing

supply.

7 Robustness

We conclude by performing a series of additional quantitative exercises to explore the robustness

of our results.

29In the appendix we show that the results of this policy are very similar to those we obtain when directly modeling
zoning regulations; i.e., a policy that imposes a constant relative number of high- to low-quality neighborhoods. The
impact on social mixing downtown is significant, but the welfare effects are again very small, as price and quality
growth are pushed to the suburbs.
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Figure 12: Effects of Increasing Supply Elasticity

Notes: This figure shows the percent change in the propensity to live downtown (on the left) and change welfare
(on the right) that result from the change in the income distribution by income decile. The clear bars show the
results from the baseline counterfactual. The blue bars show the results from the alternative counterfactual where
the elasticity of housing supply is double its baseline level in both the suburbs and downtown.

7.1 Robustness to Key Elasticities

Below our baseline results, Table 3 first shows the sensitivity of these results to ρ, the parameter that

governs the extent of sorting by income. For our robustness exercise, we set ρ = 1.5 and ρ = 4.5,

which is roughly a two-standard deviation band around our baseline ρ estimate. As individuals get

richer, they are more likely to move downtown when ρ is higher. Additionally, the poor are more

likely to migrate out in response to the price increase associated with rich moving downtown as ρ

is higher. In other words, gentrification forces increase as ρ increases. Therefore, higher values of ρ

amplify our welfare results. However, it is interesting to note that, even when ρ = 1.5, accounting

for spatial sorting responses increases the inequality between the top and bottom income deciles

by 2.6 percentage points.

Next in Table 3, we show the sensitivity of our results to different values of γ. For lower values of

γ, endogenous amplification of amenities downtown is stronger. As the endogenous amplification of

amenities increases, more high-income individuals move downtown putting further upward pressure

on downtown land prices in both high- and low-quality neighborhoods. This increases the welfare

differences between individuals in the top and bottom income deciles primarily by increasing the

well-being of the rich through higher love-of-variety effects.

Finally, Table 3 shows that land supply elasticities downtown and in the suburbs are a crucial

determinant of the welfare losses to poor renters. This is not surprising given the policy counterfac-

tual experiments highlighted in the prior section. Much of the welfare effect on the poor stems from

them paying higher rents downtown as the rich move in. The more inelastic the downtown housing

supply (in both absolute terms and relative to the suburbs), the more house prices move, generating

modest additional growth in the welfare gap between the poor and the rich. The growth in the

welfare gap masks heterogeneity between owners and renters. Additional price growth mitigates
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Table 3: Robustness of Welfare Estimates to Key Parameters

(∆CV −∆Inc)/Inc1990 ∆ Urban Share

All Households Renters Only Predicted (p.p.) Share of Actual

Decile: Top Bottom Diff. Top Bottom Diff. Top Bottom Top Bottom

Base Specification 3.17 -0.42 3.59 1.81 -0.74 2.55 1.16 -1.75 57% 41%

Elasticity of Substitution between Neighborhood Types (base: ρ = 3)
ρ = 1.5 2.26 -0.30 2.57 1.16 -0.60 1.75 1.36 -1.96 67% 46%
ρ = 4.5 3.73 -0.46 4.19 2.29 -0.76 3.05 1.40 -2.09 69% 49%

Elasticity of Substitution between Same-Type Neighborhoods (base: γ = 6.8)
γ = 4 5.34 -0.42 5.75 3.36 -0.55 3.91 2.38 -3.62 117% 85%
γ = 8 2.75 -0.42 3.17 1.52 -0.78 2.30 1.07 -1.59 53% 37%
γ =∞ 0.71 -0.42 1.13 0.09 -1.02 1.11 0.82 -1.06 41% 25%

Housing/Land Supply Elasticities (base: εD = 0.6, εS = 1.33)
εD = 0.3, εS = 1.33 3.19 -0.43 3.62 1.81 -0.77 2.57 1.05 -2.03 52% 48%
εD = εS = 1.33 3.12 -0.39 3.52 1.83 -0.68 2.51 1.38 -1.20 68% 28%
εD = 2.4, εS = 5.33 2.90 -0.12 3.02 2.04 -0.09 2.13 1.51 -1.47 75% 35%

Notes: This table summarizes the sensitivity of our welfare results and changing location choice predictions to
alternate parameter values. The first three columns report the sensitivity of the absolute change in welfare of the
top and bottom decile of the income distribution (columns 1 and 2) and the relative change in welfare between
these deciles (column 3) to values of the key parameters, while feeding in the same income shock. The next three
columns show the same welfare statistics for renters (i.e., households not receiving any share of the house price
appreciation mutual fund). The final columns summarize the model predictions for the urbanization of top income
decile households and the suburbanization of bottom income deciles, first in absolute percentage point terms and
then as a share of the respective 2.3 percentage point inflow and 4 percentage point outflow observed in the data.

welfare losses for poor owners downtown, but exacerbates losses to poor renters.30

Overall, this variation in our welfare and spatial sorting estimates to different parameter values is

useful for understanding the forces driving our results. But we note that over reasonable parameter

ranges, our welfare results are fairly similar. Our main qualitative results are not reversed by any

of these perturbations: poor households (particularly renters) are worse off in both absolute terms

and relative to the wealthy from the spatial sorting response to top income growth between 1990

and 2014.

7.2 Targeting an Additional Moment

In this subsection, we explore how the calibrated model matches housing spending share. In the

model, the unit housing requirement means that, within neighborhood type, all households spend

the same amount on housing regardless of income, so the income share of housing expenditure

is mechanically downward sloping in income. This slope is mitigated by non-homothetic sorting

across neighborhoods: higher incomes sort into the more expensive neighborhood types so their

income share of housing does not fall proportionally with income. With only four neighborhood

30We also explored the robustness of our results to the public finance parameters (TD, TS , and Ω). The choice of
these parameters had little influence on either our welfare or spatial sorting results.
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types in the quantified model, this sorting goes a long way in replicating the income share of housing

in the data. However, as we discuss further below, the implied housing “Engel” curve from the

quantitative model is still larger than what is found in the data.

To create a data analog, we use reported spending patterns on “housing” by income deciles

reported in public release tables from the Consumer Expenditure Survey (CES). For our empirical

measure of housing expenditures, we use the CES’s combined reported expenditure on “Shelter”

and “Utilities”.31 Both in the data and the model we regress the housing share of total expenditure

on log total income. Using the model, we get a housing share Engel curve semi-elasticity of -0.19;

this implies that a 10 percent increase in income is associated with the housing spending share

falling by 1.9 percentage points. When we run the same regression on the CEX generated data, we

get a housing share Engel curve semi-elasticity of -0.11. Moreover, in the CEX data, we can run

the housing expenditure share on log expenditure (as opposed to log income); in our static model,

a household’s log income equals their log expenditure. When we run this latter regression in the

CEX data, we get a housing share Engel curve semi-elasticity of -0.06. In other word, our model

is generating a stronger relationship between the housing share of expenditure and total income

(expenditure) relative to the data.

In our baseline specification, we target the relative housing prices across neighborhoods and the

U-shape downtown sorting patterns when calibrating our model. However, given that our model

is off in matching how the housing spending share varies with income, as a robustness exercise we

use the empirical housing Engel curve slope from the CEX as an additional model target. These

results are shown in Figure 13 and Table 4. Specifically, we target housing Engel curve slopes of

-0.14, -0.10, and -0.06. These values span the estimates from the CEX micro data. In all cases,

when we target these values, our model is able to match the Engel curve slopes exactly. However,

as seen in Figure 13, in order to target a flatter housing Engel curve, the model needs to generate

a higher housing price in downtown high-quality neighborhoods. In particular, if richer households

are going to spend more on housing in our model with a unit housing requirement, the model needs

to make the housing predominantly bought by higher income households more expensive. It is also

interesting to note that our fit matching the U-shape sorting pattern is essentially invariant to the

targeted Engel curve slope.

Table 4 shows how our welfare and gentrification results change as we target different Engel curve

slopes. The higher price of downtown high-quality neighborhoods implies that fewer household can

afford to live in those neighborhoods even with income growth. As a result, the model’s implied

gentrification gets slightly smaller as we target a flatter housing Engel curve. As the Engel curve

gets flatter, our welfare results also get mitigated slightly. However, even when we target a housing

Engel curve of -0.06, we still find that the welfare of the top income deciles grows by 3.1 percentage

31See https://www.bls.gov/cex/tables/calendar-year/mean-item-share-average-standard-error.htm#

cu-income for the Consumer Expenditure Survey (CES) public release tables. We omit the “Other Lodging”
component of the “Shelter” category when making our empirical measure. The “Other Lodging” component includes
the household’s spending on hotels, vacation homes, and college dorm fees. We discuss the details of the mapping of
CES measures of housing to our model analogs in the online appendix.
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Figure 13: Sensitivity of Calibrated 1990 Urban Shares and Neighborhood Prices to Targeting
Housing Share Moment

Notes: These figures show the fit of the calibrated model to the two main targeted moments, when targeted alone and
then along with a moment targeting an Engel slope. The left-hand plot shows the share of households in each $5,000
income bracket that reside downtown in 1990. The solid blue line shows the data, while the solid red line shows the
prediction of the base calibrated model. The dashed lines then show the prediction of the model calibrations that
target different Engel curve slopes. The clear bars in the right-hand plot shows the average Census home value in
tracts of each location-quality type, normalized by the average index in low-quality tracts downtown, in 1990. The
solid red bars show the predicted relative housing costs predicted by the baseline calibrated model, while the solid
bars next to the baseline show the predictions of the model when calibrated to different Engel curve slopes as well as
these two moments.

points relative to the bottom decile in response to the observed income growth between 1990 and

2014.

7.3 Additional Potential Mitigating Forces

A limitation of the benchmark model is the assumption that increased variety of neighborhoods of a

given rq type only benefits inhabitants of that type of neighborhood. In reality, the gentrification of

downtown neighborhoods can benefit all inhabitants of the city, to the extent those inhabitants can

travel to consume urban amenities there. In an additional robustness specification, we modify the

model to allow for individuals to consume amenities in other neighborhoods types. We discipline this

model extension using (1) expenditure data from the Consumer Expenditure Survey on spending

on amenities like restaurants and entertainment venues and (2) proprietary cell-phone data which

maps the extent to which individuals travel to restaurants and entertainment options outside of

the neighborhood where they live. Our conjecture was that such a model extension would mitigate

the welfare differences between high and low income decile residents stemming from the changing

spatial sorting response to the shift in the income distribution between 1990 and 2014. As the influx

of the rich created more high-quality downtown neighborhoods, lower income households would get

additional utility from consuming the amenities of those neighborhoods. While our conjecture was

qualitatively correct, allowing for this channel had a very small quantitative effect on our welfare

results. The reason for the small adjustment to our welfare results stemmed from the fact that
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Table 4: Robustness of Welfare Estimates to Targeting Housing Share Moment

(∆CV −∆Inc)/Inc1990 ∆ Urban Share

All Households Renters Only Predicted (p.p.) Share of Actual

Engel Slope Top Bottom Diff. Top Bottom Diff. Top Bottom Top Bottom

Base Specification
-0.19 3.17 -0.42 3.59 1.81 -0.74 2.55 1.16 -1.75 57% 41%

Targeting Engel Slope
-0.14 3.20 -0.37 3.57 1.85 -0.60 2.45 1.05 -1.59 52% 38%
-0.10 3.08 -0.31 3.38 1.80 -0.45 2.25 0.94 -1.40 46% 33%
-0.06 2.84 -0.22 3.06 1.69 -0.27 1.97 0.85 -1.21 42% 29%

Notes: This table summarizes the sensitivity of our welfare results and changing location choice predictions to adding
a moment targeting an Engel slope to the calibration. The structure of the table replicates that of Table 3.

empirically, the expenditure share on urban amenities was relatively small and the cell-phone data

highlighted that lower income households rarely consume amenities in high-quality neighborhoods.

Given the small quantitative results, we omitted the details of this extension from the current

version of the paper. However, the full details can be found in the NBER working paper version of

our paper (Couture et al., 2019).32

8 Conclusion

We set out to explore the link between rising incomes at the top of the income distribution and

changes in the urban landscape of U.S. cities in the past few decades: high-income households

have been moving into downtowns, where housing prices have gone up and neighborhoods have

been changing dramatically. These changes have led to anti-gentrification protests and a renewed

interest in policy circles for maintaining social diversity in urban neighborhoods. To study this

phenomenon, we develop a spatial model of a city with heterogeneous agents, neighborhoods of

different qualities, and non-homothetic preferences. We quantify the model and use it to tease out

how much of the change in spatial sorting patterns by income over time can be plausibly traced

back to changes in the income distribution, tilted towards higher incomes.

Our estimates suggest that rising incomes at the top of the distribution were a substantive

contributor to increased urban neighborhood change during the last 25 years within the U.S. The

analysis also suggests that neighborhood change resulting from the increased incomes of the rich

did make poorer residents worse off. Accounting for the spatial sorting response resulting from the

change in income distribution between 1990 and 2014 exacerbates the growing inequality between

the top and bottom income deciles by an additional 3.6 percentage points.

We explore possible policy responses to mitigate these distributional impacts of neighborhood

32In the working paper, we also allowed for commuting costs to differ between the suburbs and downtown. We used
data from the National Household Transportation Survey to discipline the differential commuting costs. Allowing for
commuting differences between the suburbs and downtown did not alter our quantitative results in any way.
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change. We find that policies that contain gentrification seem to only lead to a very modest

mitigation of the increase in well-being inequality, which could arguably be targeted more efficiently

by direct redistribution. On the other hand, these policies are effective at maintaining social

diversity in urban neighborhoods, arguably one of the goals of such policies. However, policies that

relax land supply constraints can mitigate welfare losses to the poor.

In this paper, we have focused on the within-city consequences of a rise in top incomes. By

doing so, we have highlighted one mechanism that has contributed to shape neighborhood change in

the past twenty five years: the rising incomes of the rich coupled with non-homothetic preferences

for location across income groups. In order to conduct this analysis, we have developed a model

that is stylized in some dimensions, but is very flexible. It is in particular amenable to study other

sources of changes in within-city spatial sorting that are potentially empirically relevant. Using our

framework to study other potential causes of neighborhood change is a natural avenue for future

research.
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Online Appendix:

“Income Growth and the Distributional Effects

of Urban Spatial Sorting”

Appendix A U-Shaped Sorting Patterns

In this section, we detail the construction of the U-Shape urbanization patterns by income docu-

mented in Figure 1 in the main text. We also highlight the robustness of the U-Shape patterns to

alternate downtown definitions and within detailed demographic groups.

Appendix A.1 Main U-Shape Figure

Figure 1 of the main text summarizes the Engel curve for residing downtown. It shows the relative

propensity of families to reside downtown by income, and its evolution over time. The stylized

facts in this figure are based on data from the 1970, 1990, and 2000 U.S. Censuses, as well as from

the 2012-2016 American Community Surveys (ACS). We refer to the 2012-2016 pooled ACS data

as the 2014 ACS. We use census tract level data published by the National Historical Geographic

Information System (NHGIS). All data are interpolated to constant 2010-boundary tracts and

2014-boundary CBSAs using the Longitudinal Tract Data Base (LTBD). We complement Census

tables with microdata from the Integrated Public Use Micro-data Series (Ruggles et al., 2018),

adjusted for top-coding using the generalized Pareto method. We use the 1% IPUMS sample in

1970, and the 5% IPUMS samples in 1990, 2000, and 2012-2016. In what follows, all income

measures are CPI-adjusted to 1999 dollars. We provide a detailed discussion of this data (including

our top-coding procedure) below in Appendix C.

With this data, we measure the location choice of households with differing levels of income.

As described in the main text, we classify as downtown the set of tracts closest to the city center

that accounted for 10 percent of the CBSA’s population in 2000. This defines a spatial boundary of

downtown, which we keep constant across all years. Figure A.1 shows the downtown and suburban

tracts for the CBSAs of New York, Chicago, Philadelphia, San Francisco, Boston, and Las Vegas.

Figure A.2 shows income growth in downtown and selected suburban tracts within the central

county of each of these CBSAs.

Each point in Figure 1 represents the share of families, in a given Census income bracket, who

reside downtown in a given year – normalized by the share of all families who reside downtown

that year. This normalization allows us to abstract from the suburbanization of the population

as a whole over this period due to general population growth. The share of families at all income

levels that live downtown was 0.1 in 2000 (by construction) but was 0.17 in 1970 and 0.08 in 2014.

The x-axis features the median family income for that bracket in the same year, in 1999 dollars,

computed using IPUMS micro data. The number of points on the graph is limited by the number

of income brackets reported by the Census for tract-level information.
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Figure A.1: Downtown and Suburban Tracts in Selected CBSAs.

Note: Downtown tracts in dark blue consists of all tracts closest to the city center and accounting for 10% of total
CBSA population in 2000.

49



Figure A.2: Income Growth in Tracts within Central County of Selected CBSA
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Note: Each map shows the central county of a given CBSA, except for New York which shows the five counties
(boroughs) of New York City. Downtown tracts in blue consist of all tracts closest to the city center and accounting
for 10% of total CBSA population in 2000. The shading of each tract shows its percent growth in median household
income between 1990 and 2014.
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Finally, we note that the patterns in Figure 1 robust to CBSA sub-samples, the choice of price

deflator, and the use of household income rather than family income. In the next subsections, we

explore robustness to downtown definitions, and within detailed demographic groups.

Appendix A.2 U-Shape for Different Downtown Definitions

We now verify that the U-shape patterns of urbanization by income are not qualitatively sensitive

to reasonable variation in downtown definitions. Figure A.3 shows a replication of Figure 1 in

the main text for 5, 15, and 20% downtown population cut-offs, in addition to our baseline 10%

cut-off. The figure also shows alternative downtown definitions - similar to that in Baum-Snow

and Hartley (2020) - that include all tracts whose centroid are within 3 or 5 miles from the city

center. All these definitions similarly confirm that U-shape urbanization patterns by income become

more pronounced from 1990 to 2014. Unsurprisingly, this uptick becomes less pronounced as the

definition of downtown becomes geographically larger.

Figure A.3: U-shape of different downtown definitions
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Note: This figure uses Census data on family income for the 100 largest CBSAs in 1970, 1990, and 2014. Urban tracts
consists of all tracts closest to the city center that account for 5%, 10%, 15%, or 20% of the CBSA’s population in
2000, or all tracts with centroid within 3 miles or 5 miles of a CBSA’s city center. Each dot in the figure corresponds,
on the x-axis, to the median family income within each Census bracket. We compute this median using IPUMS
microdata for the corresponding year in the 100 largest CBSAs. All incomes are in real 1999 dollars.
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Appendix A.3 U-Shape with Demographic Controls

One may think that these U-shape patterns reflect demographic characteristics that are correlated

with income, and/or that the changes in the U-shape pattern over time simply reflect demographic

shifts that are correlated with income and that took place between 1990 and 2014. In this section,

we replicate Figure 1 showing normalized urban shares by income bracket, but controlling for

demographic characteristics.

Unlike Figure 1 that uses Census tables from the 100 largest CBSAs, here we use our 27 CBSAs

with constant downtown geography, which allows us to control for demographic characteristics of

households. We create demographic control dummies for race, age, family type, nationality of birth,

and dual income status.1 For race, we use the IPUMS definitions.2 For age, we construct 5-year

age buckets. For family type, we define four categories: Unmarried - No Children, Married - No

Children, Youngest Child < 5, and Youngest Child > 5. For nationality of birth, we define two

categories: native born and foreign born. We define dual income households as having two adults

working at least 30 hours per week. We include interactions of dual income status and family type

(after merging married and unmarried with no children into a ”no children” family type), which

allows us to capture dual income households with no kids (DINK).

To compute urban shares within each income bracket without demographic controls, we estimate

the following equation, separately in 1990 and in 2014:

UrbanWeighti = c +
∑
k∈K

βkIncomeDummyki, (A.1)

where UrbanWeighti is the urban weight of household i, which equals 1 if the household is assigned

entirely to the urban area of its CBSA.3 IncomeDummyki is a dummy equal to 1 if household i is

in income bracket k.4 The fitted values from this regression are urban shares within each income

bracket. To normalize these shares relative to the average household, we divide the fitted value

for each income bracket, ĉ+ β̂k, by a weighted average of all fitted values, where each fitted value

is weighted by the total number of households in that income bracket. Plotting these normalized

fitted values against median income within each income bracket replicates Figure 1 in the paper,

but using IPUMS data for our 27 constant geography CBSAs instead of Census tables.

To compute urban shares that control for demographic characteristics, first denote each group

1The age, race, and nationality at birth are that of the head of household. The youngest age for a head of
household with nonzero income is 15.

2We have to merge three categories in 2014 so the definitions are consistent across both periods. These three
categories are ‘Other race’ ‘Two major races’ and ‘Three or more major races’. We match all of these to the 1990
definition ‘Other race’. Hispanic is a separate variable in IPUMS. For this analysis, we do not distinguish whether a
person is hispanic or not.

3We use a weight instead of a 0/1 dummy because we only know household location at the PUMA level, and some
PUMAs span both the urban and suburban areas.

4We assign each household into 100 evenly log-spaced household income brackets. We adopt this methodology
so brackets are directly comparable between 1990 and 2014, and to ensure large enough population counts in higher
income brackets. We merge the bottom 61 brackets with income below $10,000, and then we drop all income between
$200,000 and $400,000 that is heavily impacted by topcoding in IPUMS. See Appendix C for further discussion. Our
results are robust to different methods of adjusting for topcodes.
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of controls (race, age, family type, race, nationality, dual income) by g, and each category within

a group by d (e.g., 30-34 year olds). The estimating equation becomes:

UrbanWeighti = c +
∑
k∈K

βkIncomeDummyki +
∑
g∈G

∑
d∈D

γgdDemoDummyigd, (A.2)

where DemoDummyigd is equal to 1 if household i is in category d within group of controls g. To

obtain urban shares within each income bracket k that control for demographic characteristics, we

compute fitted values of equation A.2 under the assumption that demographic shares within each

income brackets are exactly representative of the demographic shares within the total population.

Under this assumption, fitted urban shares are equal to:

c + β̂k +
∑
g∈G

∑
d∈D

SharePopgd × γ̂gd,

where SharePopgd is the share of total population in each category d (e.g., share of 30-34 year olds).

Figure A.4 shows normalized urban shares for each income bracket in 1990 and 2014. The left-

hand plots shows estimates from equation (A.1) (without demographic controls) and the right-hand

plot shows estimates from equation (A.2) (with demographic controls.)

Our key finding is that controlling for demographics makes the U-shape even more pronounced

at the top of the income distribution, in both 1990 and 2014. The regression results from equation

A.2 show what drives this finding. In Table A.1, column 1 and 2 show the coefficient on each

demographic group dummy in 1990 and 2014, column 3 and 4 show the correlation of each de-

mographic group dummy with household income in 1990 and 2014, and column 5 and 6 show the

share of the population within each demographic group. The table shows that there is almost an

exact correspondence between the demographic groups that are most suburbanized, wealthiest, and

largest. This explains why the urban share of high-income households is larger once we control for

demographics; high-income households would be even more urbanized if they weren’t also white,

middle-aged, and with older children, all of which are suburbanized demographic categories. These

first order correlations hold in both 1990 and 2014, so the uptick in the U-shape from 1990 to 2014

largely persists after adding demographic controls.

To further assess whether the U-shape patterns that we document are specific to certain de-

mographic categories, in Figure A.5 we plot normalized urban shares separately by demographic

category within each group. To get large enough samples, we further aggregate age (25-34, 35-44,

45-64, 65+), and race (we keep ”white”, ”Black”, and an ”other” category comprised mostly of

Asian, Indigeneous, or multiethnic households.) Remarkably, we find a U-shape pattern, and an

urbanization of the richest households from 1990 to 2014 in each category within each group of

demographic characteristics.5

5The figure only show dual income with no kids (DINK) and non-DINK households, but we also find U-shape
patterns for all dual income households and all non-dual income households.
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Table A.1: Coefficients on Demographic Control Dummies in 1990 and 2014

Correlation with Share of Pop
Coefficient HH Income Within Group

Variable 1990 2014 1990 2014 1990 2014

Age < 24 (omitted) . . -0.114 -0.091 0.047 0.032
Age 25-29 0.000 0.021 -0.051 -0.051 0.101 0.071
Age 30-34 -0.006 0.004 0.006 -0.005 0.123 0.091
Age 35-39 -0.007 -0.025 0.049 0.030 0.118 0.092
Age 40-44 -0.014 -0.044 0.098 0.051 0.109 0.098
Age 45-49 -0.016 -0.057 0.118 0.063 0.088 0.102
Age 50-54 -0.018 -0.068 0.099 0.062 0.071 0.106
Age 55-59 -0.018 -0.072 0.067 0.049 0.066 0.100
Age 60-64 -0.019 -0.073 0.010 0.014 0.068 0.087
Age 65-69 -0.030 -0.080 -0.063 -0.014 0.067 0.072
Age 70-74 -0.034 -0.083 -0.096 -0.044 0.055 0.052
Age 75-79 -0.036 -0.087 -0.109 -0.061 0.044 0.038
Age 80-84 -0.040 -0.091 -0.098 -0.066 0.027 0.029
Age 85+ -0.037 -0.098 -0.087 -0.081 0.017 0.030

Native Born (omitted) . . 0.041 0.048 0.847 0.752
Foreign Born 0.039 0.028 -0.041 -0.048 0.149 0.248

White (omitted) . . 0.150 0.113 0.780 0.690
Black 0.145 0.058 -0.148 -0.132 0.141 0.158
Native American 0.047 0.037 -0.014 -0.017 0.004 0.004
Chinese 0.088 0.042 0.011 0.023 0.010 0.021
Japanese 0.033 0.034 0.016 0.010 0.004 0.003
Other Asian 0.013 -0.000 0.019 0.053 0.020 0.049
Other Race (including mixed raced) 0.120 0.038 -0.073 -0.070 0.041 0.074

Unmarried-No children (omitted) . . -0.288 -0.244 0.343 0.380
Married-No children -0.052 -0.054 0.111 0.128 0.209 0.200
Youngest Child ≤ 5 -0.040 -0.101 0.012 0.031 0.138 0.105
Youngest Child > 5 -0.029 -0.056 0.189 0.125 0.310 0.315

Non-dual Income (omitted) . . -0.384 -0.299 0.522 0.607
Dual Income -0.010 -0.009 0.384 0.299 0.478 0.393

Dual Income*No Children (omitted) . . 0.201 0.186 0.126 0.103
Dual Income*Youngest Child ≤ 5 -0.034 0.001 0.061 0.068 0.116 0.077
Dual Income*Youngest Child > 5 -0.039 -0.024 0.249 0.175 0.237 0.212

Note: Columns 1 and 2 report the coefficients from equation (A.2) for years 1990 and 2014 with all demographic
controls included. The standard errors are small and not shown. Columns 3 and 4 show the pairwise correlation of
each demographic control dummy and household income. Columns 5 and 6 report the total share of population
falling into each demographic category.

54



Figure A.4: Impact of Demographic Controls on Relative Urbanization by Income

.5
1

1
.5

2
2
.5

R
e
la

ti
v
e
 U

rb
a
n
 P

ro
p
e
n
s
it
y

0 100000 200000 300000 400000 500000
Household Income

No Controls

.5
1

1
.5

2
2
.5

R
e
la

ti
v
e
 U

rb
a
n
 P

ro
p
e
n
s
it
y

0 100000 200000 300000 400000 500000
Household Income

Demographic Controls

Normalized IPUMS Urban Share

1990 2014

Note: This figure shows urban shares normalized by the aggregate urban share in each year with and without
demographic controls. The left plot shows the coefficients from equation (A.1). The right plot shows the coefficients
from equation (A.2). We drop household with income below $10,000 and between $200,000 and $400,000. IPUMS
data from 1990 and 2014 in 27 CBSAs with constant downtown areas.
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Figure A.5: Normalized Urban Shares by Demographic Categories in 1990 and 2014
Panel A: Age

Panel B: Race

Panel C: Family Type

Panel D: Foreign Status Panel E: Dual Income with No Kids (DINK)

1990 2014

Note: This figure shows normalized urban shares from equation (A.1), plotted separately for each demographic
category. The right plot shows the coefficients from equation (A.2). We drop household with income below $10,000
and between $200,000 and $400,000. IPUMS data from 1990 and 2014 in 27 CBSAs with constant urban areas.
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Appendix B Model Appendix

Appendix B.1 Income Elasticity of Housing consumption

Neighborhoods differ in the size and quality of their housing units, driven by the quality shifter

krq that in turn impacts housing prices prq (see equation (6)), but housing is homogeneous within

a neighborhood. Therefore, in the model, variation in housing spending patterns across income

groups arises solely from variation in the fraction of households who choose neighborhoods of

various types. Despite this simple setup, we show now that the model is able to capture salient

features of housing consumption in the data. Denoting with p̄ (w) ≡
∑

r,q λrq (w) prq the average

expenditure on housing for households of income w, the income elasticity of housing consumption

in the model is:
∂ log p̄ (w)

∂ logw
= ρ

w

p̄ (w)

∑
rq

(prq − p̄ (w))λrq (w)xrq (w) , (B.3)

where xrq (w) = (w − prq)−1 . This income elasticity ∂ log p̄(w)
∂ logw is strictly positive as soon as the city

has more than one type of neighborhoods to choose from (and would be trivially 0 otherwise).

Proof. If there is only one type of neighborhood, one can factorize x(w) and get that:

∂ log p̄ (w)

∂ logw
= ρx (w)

w

p̄ (w)

∑
rq

(
phrq − p̄ (w)

)
λrq (w) = 0,

by definition of p̄. If there are several types of neighborhoods, note that xrq (w) increases with prq.

Therefore, cov
(
phrqλrq (w)− p̄ (w)λrq (w) , xrq (w)

)
> 0 for any w. The result follows.

Appendix B.2 Closing the Model: Neighborhood Development

A developer of neighborhood n of type rq faces total operating cost
∫
w λr (w) krqRrdF (w) to serve

its demand, for revenues
∫
w λn (w) prqdF (w), so that its operating profits are:

πn =

[∫
w
λn (w) dF (w)

]
(pn − krqRr) . (B.4)

Among households with income w, the share that locates in a particular neighborhood n of

type (r, q) is λn (w) = λrq (w)λn|rq (w), where the notation λn|rq indicates the share of workers who

choose neighborhood n conditional on choosing a neighborhood of quality q in location r. Given the

structure of the idiosyncratic preference shocks, the conditional probability of choosing n among

other (r, q) choices is:6

λn|rq (w) =
Vn(w)γ∑

n′∈R(rq) Vn′(w)γ
=
Vn(w)γ

Vrq(w)γ
, (B.5)

6In equilibrium, all neighborhoods are symmetric within type, so that λn|rq (w) = 1
Nrq

.
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where Vrq(w) is defined in (4) and Vn(w) is the inclusive value of neighborhood n:

Vn (w) = (w − pn)Brq(n). (B.6)

The probability λrq(w)that the neighborhood chosen is of type (r, q) is given by (3). Plugging

in the expression for λn as a function of price and taking the developer’s first order condition for

profit maximization leads to the following pricing formula:

pn =
γ

γ + 1
krqRr +

1

γ + 1
Wrq(pn), (B.7)

where Wrq(p) =
∫
w(w−p)−1δ(w)wdF (w)∫
w(w−p)−1δ(w)dF (w)

with δ(w) = 1{w − p > 0}.

By symmetry, all neighborhoods of type (r, q) have the same price in equilibrium, which we

denote as prq, given in (6). Finally, under free entry, the number of developers entering location r

at quality q becomes:

Nrq =
1

frq

[∫
w
λrq (w) (prq − krqRr) dF (w)

]
. (B.8)
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Appendix C Data Sources and Sample Descriptions

This section details the data sources used in our various empirical analyses. We also discuss how

we adjust our income data for topcoding in the IPUMS data.

Appendix C.1 Census Data and ACS Data

Census Tract Data For our work at the neighborhood level, we assemble a database of constant

2010 geography census tracts using the Longitudinal Tract Data Base (LTDB) and data from the

National Historical Geographic Information System (NHGIS) for the 1970-2000 censuses and the

2012-2016 ACS. In each of the censuses from 1970 to 2000, some tracts are split or consolidated and

their boundaries change to reflect population change over the last decade. The LTDB provides a

crosswalk to transform a tract level variable from 1970 to 2000 censuses into 2010 tract geography.

This reweighting relies on population and area data at the census block level, which is small enough

to ensure a high degree of accuracy. We combine these reweighted data with the 2012-2016 ACS

data (‘2014 ACS’), which already uses 2010 tract boundaries.

The Census house price data in 1990 and 2014 is the median house value for all owner-occupied

housing units within each census tract. The Census family income data is the count of all families by

income brackets in 1970, 1990, and 2014 within each census tract. The Census household income

data is the count of all households in each income bracket in 1970, 1990, and 2014 within each

census tract.7

CBSA Definitions Core Based Statistical Areas (CBSAs) refer collectively to metropolitan and

micropolitan statistical areas. CBSAs consist of a core area with substantial population, together

with adjacent communities that have a high degree of economic and social integration with the

core area. We assign 2010 census tracts to CBSAs based on 2014 CBSA definitions. Our model

estimation sample consists of the 100 metropolitan area CBSAs with the largest population in

1990s.

IPUMS Data PUMA geography is also not constant from 1990 to 2014, so we use a crosswalk

between PUMAs (Public-Use Microdata Areas) and CBSAs in each year to link each PUMA to a

CBSA. To construct constant downtowns from PUMAs across years, we follow the methodology in

(Couture and Handbury, 2017). We first intersect PUMA geographies in 1990 and 2014 with our

constant downtown geography described in the main text, defined out of tracts closest to the city

center accounting for 10 percent of a CBSA’s population in 2000. PUMAs generally intersect with

both the urban and suburban region of a CBSA, so we assign an urban weight to each PUMA equal

to the percentage of that PUMA’s population falling within the urban region (i.e., downtown) of

7A family is a group of two or more people related by birth, marriage or adoption and residing together. The
main difference between households and families in the Census is that families exclude persons living alone, or groups
of unrelated people living together. Figure 1 uses family income instead of household income, because household
income is top-coded at a much lower value in 1970, at only $25,000. The family income data is top-coded at $50,000
in 1970, $150,001 in 1990, and $200,001 in 2014.
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that CBSA. We compute the urban and suburban population of each PUMA using the population

of all census blocks whose centroid falls in a given region.

In most of the 100 CBSAs, PUMAs are too large to accurately represent downtowns. We

therefore enforce an inclusion criteria where we only keep CBSAs for which 60% of the urban

population lives in PUMAs whose population is at least 60% urban. Under this restriction, we find

a set of 27 CBSAs for which we can define urban areas in 1990 and 2014.

Topcoding in IPUMS Data IPUMS data is topcoded by income component. Household and

family income reported in the IPUMS data is sum of total individual income for all members of

the household or family. Total individual income is the sum of income components where each

component has a unique topcode. Table C.2 shows each of the income components that contribute

to total individual income and their respective topcodes for 1990 and 2014.

Table C.2: Topcoded Income Components Contributing to Total Individual Income

1990 2000+

Variable Description Topcode
(nominal)

Variable Description Topcode (nomi-
nal)

INCWAGE Pre-tax wage and salary in-
come

$140,000 INCWAGE Pre-tax wage and salary
income

99.5th Percentile
in State

INCBUS Non-farm business and/or
professional practice income

$90,000 INCBUS00* Business and farm in-
come and/or professional
practice income

99.5th Percentile
in State

INCFARM Farm $54,000 INCSS Social security and dis-
ability

Not Topcoded

INCSS Social security and disabil-
ity

$17,000 INCWELFR Other government assis-
tance

Not Topcoded

INCWELFR** Other government assis-
tance

10,000 INCSUPP Supplementary Security
Income

Not Topcoded

INCINVST Rents, interests, dividends,
etc.

$40,000 INCINVST Rents, interests, divi-
dends, etc.

99.5th Percentile
in State

INCRETIR Retirement income other
than social security

$30,000 INCRETIR Retirement income other
than social security

99.5th Percentile
in State

INCOTHER Income not included above $20,000 INCOTHER Income not included
above

99.5th Percentile
in State

∗ 1990 equivalent is INCBUS + INCFARM
∗∗ 2014 equivalent is INCWELFR + INCSUPP

In 1990, component topcodes are the same across all states. Table C.3 shows the percent

of all units impacted by topcoding for each component for individuals, households, and families.

For households and families, we assume that any household or family whose reported component

level income is above the person-level topcode is subject to topcoding for that component. The

last row of the table shows the percent of total aggregate income impacted where we apply the

individual-level topcode for wages.

In the 2012-2016 ACS, component topcodes vary both across states and year. State-specific

topcodes for wages range from $105,000 to $280,000 in 1999 dollars. Because of this high variance,

we allow each state to retain a state-specific topcode: the minimum topcode in 1999 dollars across
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Table C.3: Percent of Income Impacted by Topcoded Components in 1990

Variable Person Household Family

incwage 0.60% 1.39% 1.66%
incbus 3.70% 4.25% 4.62%
incfarm 2.79% 3.28% 3.48%

incss 0.73% 3.67% 5.60%
incwelfr 3.18% 5.80% 6.83%
incinvest 2.11% 2.98% 3.18%
incretir 3.20% 4.15% 5.08%
incother 2.28% 2.51% 2.43%

TOTAL 0.62% 1.78% 2.28%

Note: This table shows the percent of income at or above the topcode value in 1990 among the set of observations
where income is non-missing and greater than $0.

Table C.4: Percent of Income Impacted by Topcoded Components in 2014

Variable Person Household Family

incwage 1.2% 3.5% 4.5%
incbus 3.7% 4.4% 5.1%

incinvest 3.6% 4.6% 5.2%
incretir 3.5% 5.6% 7.2%
incother 3.4% 4.0% 4.0%

TOTAL 1.5% 4.1% 5.8%

Note: This table shows the percent of income at or above the topcode value in 2014 among the set of observations
where income is non-missing and greater than $0. The topcode value is set at the minimum topcode in each state
across the five years of ACS (2012-2016).

the 5 years of ACS. Table C.4 shows the percent of income impacted by topcodes for different

components and units of observation. The last row of the table shows the percent of total aggregate

income impacted where we apply the state specific individual-level topcode for wages.

To interpolate the income distribution above the topcoded values, we turn to the Piketty et al.

(2017) methodology to construct We use the R package gpinter that Piketty et al. (2017) developed

to estimate the generalized Pareto curves for each state s, region r, and period t.8, 9,10 The gener-

8Since we are only able to define urban cores for the set of 27 CBSAs with sufficiently small PUMAs in 1990 and
2014, we estimate the distribution only for the portion of state s that is covered by a CBSA in that sample.

9Generalized Pareto curves allow the pareto coefficient to vary with income. In the U.S. context, the relationship
between the Pareto parameter and income has become increasingly U-shaped over time. This would suggest that a
simple Pareto, allowing for a single Pareto coefficient, would underestimate the fatness of the right tail of the income
distributions, especially in 2014 relative to 1990.

10The gpinter package approximates the income distribution using a set of income percentiles and the average
income between each percentile. For each state, area, and period we use the same set for the first 6 percentiles:
[10,30,45,60,75,85]. Then based on where the topcode falls for that particular distribution we allow the set of top
percentiles to vary. If the topcode percentile pt falls between the 85th and 92nd percentile, we include no additional
moments between the 85th and pt. If pt falls between the 92nd and 93rd percentile, our top two percentiles are [
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alized Pareto methodology requires an unbiased estimate of average income for some top quantile

of income. We approximate the average income above the topcode using a type I (simple) Pareto

distribution as in Armour et al. (2016).11 We also use the Armour et al. (2016) simple Pareto

to interpolate the income distribution above the topcode for all regions and periods in any state

for which the generalized Pareto estimation routine converged to a degenerate distribution for any

region-by-period.

We combine the income distribution observed in the IPUMS data below the topcode with the

approximated distribution above the topcode. To do this, we first a construct a kernel-smoothed

CDF using the IPUMS data below the topcode. We then join the below-topcode CDF with the

above-topcode CDF from the generalized Pareto distribution. To avoid any kinks around the join

point we first adjust the above-topcode CDF such that it matches the CDF at the topcode for

the below-topcode. We use numerical differentiation of this CDF to derive the full PDF adjusting

for topcoding. To further avoid any kinks around the topcode, we cut incomes within $1,500 of

the topcode and interpolate through the PDF. Using the total population in region r, state s, and

period t we use this smoothed PDF to get a population estimate at each $5,000 interval. Finally,

we can aggregate across states to get the urban, suburban, and total distribution for each of the 27

CBSAs in our calibration sample in 1990 and 2014 and across samples to get the urban, suburban,

and total distribution for our pooled “representative city” sample.

Our main 1990 calibration and 2014 counterfactual uses the distribution of household income.

Only family income is available in earlier decades (1950 and 1970) so, to study backward-looking

counterfactuals, we re-calibrate the model using family income, interpolating the distributions for

each state and area above the respective topcodes in 1990 and 2014 using the method outlined

above, from which we construct the aggregate income distribution and U-shape moment describing

the downtown share at each income level. For 1950 and 1970, years in which PUMAs are too large

to permit reasonably accurate depictions of the downtown regions of most of the CBSAs we use

for our counterfactuals, we instead interpolate a single aggregate income distribution above the

topcodes for each year ($10,000 in 1950 and $50,000 in 1970). This aggregate income distribution

85 + pt−85
2

, pt]. If pt falls between 93rd and 96th percentile are top 3 percentiles are [ 85 + (pt−85)
3

, 85 + 2(pt−85)
3

, pt].

If pt falls above the 96th percentile the top 4 percentiles are [ 85 + (pt−85)
4

, 85 + 2(pt−85)
4

, 85 + 3(pt−85)
4

, pt].
11Armour et al. (2016) apply a type I Pareto distribution to estimate the tail of topcoded income in survey data.

Equation C.9 shows their formula for estimating the pareto shape parameter ˆαtsn for time period t, state s, and area
n.

α̂tsn =
Mtsn

Ttsn ln(XTs) +
∑
xmtsn≤xi<xTtsn

ln(xi)− (Mtsn + Ttsn) ln(xmtsn)
(C.9)

Mtsn is the number of households or families with earnings between the lower cutoff xmtsn and the censoring point
xTtsn . In 1990, we assign the censoring point as the topcode for a single-wage household adjusted to 1999 dollars
($188,160). In 2014, for state s we choose censoring point as the topcode for a single-wage household for the year
with the lowest topcode of the 5 years surveyed. Ttsn is the number of households with income at or above censoring
point xTtsn . We choose the lower cutoff xmtsn as the 95% income in state s for period t and area n. This is consistent
with Armour et al. (2016). We add the additional restriction that at least 1.5% of the total income distribution falls
between xmtsn and xmtsn to ensure we have a sufficient data to estimate the shape parameter. If less than 1.5% of
the total income distribution falls between those two points we lower the percentile cutoff by 1% percentage point
until that condition is met.
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is sufficient to feed into the model to conduct the counterfactual prediction for the share downtown

in each year. We aggregate this counterfactual prediction to broad income brackets so that it can

be compared to the share that we observe in bracketed tract-level data from the Census.

Zillow House Price Indexes Our 2 bedroom index is the Zillow House Value Index (ZHVI)

for all two-bedroom homes (i.e., single family, condominium, and cooperative), which is available

monthly for 8,030 zip codes in 1996, 8,031 zip codes in 2000, 8,575 zip codes in 2012, and 8,898

zip codes in 2016.12 In robustness checks, we use the per square foot Zillow House Value Index for

All Homes, which is available monthly for 14,417 zip codes in 1996, 14,421 zip codes in 2000, and

15,500 zip codes in 2014. The Zillow indexes are median price estimates for a fixed (over time)

set of homes within each zip code. As a result, changes in house prices in the Zillow data can be

interpreted as appreciation of the typical home.

For each zip code in the Zillow data, we compute a yearly index by averaging over all months

of the year. We map zip codes to tracts with a crosswalk from HUD. We compute the tract-level

index as the weighted average of the home value index across all zip codes overlapping with the

tract, using as weights the share of residential addresses in the tract falling into each zip code. For

tracts falling partly into missing zip codes, we normalize the residential share in zip codes with

available data to one. The final data set contains the 2 bedroom index for around 35,000 tracts in

each year, and the all home index for around 53,000 tracts in each year.

Appendix C.2 Variable Definitions

This subsection details the computation of variables used in Section 3 onwards in the paper.

CBSA Level Wage Bartik shock We use a Bartik wage shock to predict CBSA-wide average

income growth between 1990 and 2014. We determine industry growth using 3-digit Census industry

codes in 1990. The Census Bureau provides crosswalks between 2012 and 1990 industry codes.

Examples of 3-digit industry categories includes “Aluminum production and processing”, “Shoe

Stores”, “Retail Florists”, and “Real Estate”.

To calculate national wage growth for each industry between 1990 and 2014, we use person-level

IPUMS data in 1990 and 2014. We keep the sample of people between 21 and 55 years who work

at least 35 hours a week in a non-farm profession. We use annual pre-tax wage and salary income

for individual earners. As is standard we compute a CBSA-leave out growth for each CBSA.

As in Diamond (2016), we compute wage growth in each industry as the (leave out) difference

in average log wage across years. Our Bartik income shock is then wage growth weighted by initial

3-digit 1990 industry shares in each CBSA.

For our robustness specifications, we compute Bartik shocks leaving out two major industry

12We downloaded the data in February 2019. The index and methodology are available at: http://www.zillow.

com/research/data/.
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Table C.5: Most and Least Urbanized Industries

Code Industry Urban Share

872 Museums, art galleries, historical sites, and similar institutions 24.8%
762 Traveler accommodation 20.6%
151 Cut and sew apparel manufacturing 20.5%
800 Motion pictures and video industries 20.2%
750 Car Washes 19.5%
900 Executive offices and legislative bodies 19.2%
761 Private households 18.9%
721 Advertising and related services 18.4%
951 U. S. Coast Guard 18.4%
542 Apparel, fabrics, and notions wholesalers 17.6%
... ... ...
352 Aircraft and Parts 4.0%
622 Other motor vehicle dealers 3.8%
311 Agricultural implement manufacturing 3.6%
950 U. S. Marines 3.4%
561 Farm supplies wholesalers 3.2%
41 Coal Mining 2.8%
362 Guided Missles, Space Vehicles, and Parts 2.7%
821 Office of chiropractors 2.5%
590 Miscellaneous retail stores 2.3%
11 Animal production 1.2%

Notes: This table shows the 3-digit industries with the highest share of workers who live in urban areas in row 1 to
10, and industries with the lowest share in row 11 to 20. IPUMS data from the 27 CBSAs with constant geography
urban area in 1990 and 2014. These urban areas contain 10 percent of each CBSA’s population in 2000.

categories: Finance, Real Estate and Insurance (1990 industry codes 700-712), and Technology.13.

In another robustness specification, we drop the most urbanized industries from our Bartik instru-

ment. Table C.5 shows the 10 most urbanized and 10 least urbanized industries, along with the

share of urban workers in that industry. The table highlights that even for the most urbanized

industry (Museum, Art Galleries, Historical Sites, and Similar Institutions) the share of urban

workers is only 24 percent, so that most of the Bartik variation comes from the suburbs. This is

because our urban areas, by construction, are small relative to the suburbs.

Median Income within Census Table Brackets The U-shape plot in Figure 1 shows median

income within each family income brackets from the NHGIS Census tables. To find the median

income within each census bracket, we use the distribution of family income within the 100 largest

13181 = Pharmaceuticals; 342 = Electronic component and product manufacturing ; 352 = Aircraft and Parts ;
362 = Aerospace products and parts manufacturing ; 891 = Scientific research and development services ; 732 =
Computer systems design and related services + Software Publishing + Data processing, hosting, and related services;
882 = Architectural, engineering, and related services.
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CBSAs in the IPUMS microdata in the corresponding year. To adjust for topcoding in IPUMS, we

estimate the shape of the IPUMS income distribution above the 95th percentile assuming a Pareto

distribution.

The estimation of ρ also requires median income within each census bracket. In this case,

however, the estimation requires constant brackets over time. To do this, we assume that households

are uniformly distributed within each bracket, except for the top bracket. We can then map each

CPI-adjusted census brackets in 1990 onto 2014 bracket definitions, setting median income w as

the mid-point of these constant brackets. For the top bracket (above $140,600 in 1999 dollars), we

determine median income using 2000 IPUMS microdata.

Yearly User Cost of Housing (prq,c). We first compute a population weighted-median house

price over all tracts in a given area quality pair in a given CBSA. To obtain prq,c that we use in

estimation and calibration, we multiply this median house value by a user cost of housing equal to

5.0 percent of house value in 1996, 4.7 percent in 2000 and 4.6 percent in 2014. These rent-price

ratios come from the Lincoln Institute of Land Policy.14

Property Taxes as a Share of prq,c Using CPI-adjusted tract-level ACS and Census estimates

of the median property taxes for owner-occupied units, we find the population-weighted median

amount paid in property taxes in 1990, 2000, and 2014 for each area quality pair. We then divide

this amount by prq,c.

Appendix D Robustness of Estimation of ρ

In this appendix, we show the robustness of our estimates of ρ to many different specifications,

including different time periods, different house price measures, different definitions of downtown

area, and different quality cut-offs. We also conduct pre-trends and balance tests for our Bartik

instrument.

Table D.6 replicates the ρ estimation shown in Table 1 of the main text, but replacing the Zillow

2 Bedroom house price index by Census house prices.

Table D.7 shows variants of our preferred OLS and IV estimates of ρ from column 1 and 2 of

Table 1. In column 1 and 2 of Table D.7, we change the time period from 1990-2014 to 2000-2014.15

In column 3 and 4, we change the house price index from Zillow 2 Bedroom to Zillow All Home,

and in column 5 and 6 we change the house price index to Census house prices that we hedonically

adjust for variation in number of rooms across areas.16 In column 7 and 8, we change the downtown

14Data collected in October 2018 from https://datatoolkits.lincolninst.edu/subcenters/land-values/

rent-price-ratio.asp.
15When computing the Bartik shock from 2000 to 2014, we keep the initial industry shares fixed to 1990.
16To compute the hedonically adjusted Census house prices in 1990 or 2014, we regress house prices on number of

rooms at the tract-level, and compute a fitted value of house prices in each tract at the national average number of
rooms in that year. Note that in 1990, the only available data on rooms is for all housing units, so our computations
impute the number of owner-occupied units in 1990 using data from 2000 on the share of all housing units that are
owner-occupied, for each number of rooms.
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Table D.6: Census Price ρ Estimation

(1) (2) (3) (4) (5)

ρ̂ 1.49 4.06 4.93 5.15 3.19
(0.42) (2.29) (3.35) (3.78) (1.85)

Instrument None Base Omit Omit Omit
Top Urban FIRE Hi-Tech
Industries Industries Industries

R2 0.061
KP F-Stat 2.04 1.63 1.63 1.74

Obs 7,226 7,226 7,226 7,226 7,226

Notes: This table shows estimates from equation (14). Data from 100 largest CBSAs from 1990 and 2014. Each
observation is weighted by the number of households in the income bracket with the fewest households amongst the
four brackets in each independent variable. Column 3 to 5 also control for share of omitted industries. Standard
errors clustered at the CBSA-quality level are in parentheses. KP F-Stat = Kleibergen-Paap Wald F statistic.

definition from 10% to 15% of the population living downtown in 2000, and in column 9 and 10 we

change the downtown definition to all tracts with centroids within 5 miles of the CBSA center.

Table D.8 shows robustness to changes in our high quality cut-off from at least 40 percent college

share, to at least 30, 50, or 60 percent college share. Across all three robustness tables D.6, D.7

and D.8, estimates range from 1.43 to 5.15. This range roughly overlaps with 1.64 to 4.44, which

is a two standard deviation range around our preferred estimate of 3.04 from column 2 of Table 1.

Finally, we conduct pre-trend and balance tests for our Bartik shock instrument similar to those

proposed by Borusyak et al. (2021). To test for pre-trends, we regress the pre-period dependent

variable in our ρ estimation (change in urbanization by income, from equation 14, computed for

the pre-period of 1970 to 1990), on our Bartik shock (computed from 1990 to 2014.) Table D.9

shows the result of this regression, in row 1 of Panel A. The coefficient of the Bartik shock on the

pre-period change in urbanization by income is not significant. We note that our definition of a

high-quality neighborhoods - at least 40 percent college share - may be too restrictive for 1970,

when college shares were lower. As an additional test in row 2, we reduce the college share quality

cut-off to 30 percent, and also find no evidence of pre-trends.

The balance tests are shown in Panel B of Table D.9. We estimate the correlation between

initial 1990 CBSA characteristics and the Bartik shock from 1990 to 2014. Row 1 shows the Bartik

shock correlation with initial level of house prices in downtown relative to the suburbs, row 2 shows

the Bartik shock correlation with the initial share of households in high-quality tracts in downtown

relative to the suburbs, and row 3 shows the Baritk shock correlation with the initial share of

high-income households (earning more than $100,000) in downtown relative to the suburbs. All of

these correlations are smaller than 0.14. Coefficients from the bivariate regressions corresponding

to these correlations are similarly insignificant.
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Table D.7: Robustness Exercise for ρ Estimation

2000-2014 Zillow All Home Hedonic Census 15 pct Downtown 5 miles Downtown

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
OLS IV OLS IV OLS IV OLS IV OLS IV

ρ̂ 1.70 3.19 2.45 2.91 1.43 1.78 2.21 2.80 2.73 2.66
(0.33) (1.11) (0.36) (0.96) (0.31) (0.59) (0.50) (0.84) (0.33) (0.91)

Instrument None Base None Base None Base None Base None Base

R2 0.12 0.19 0.10 0.16 0.24
KP F-Stat 8.82 5.40 4.11 25.1 26.8

Obs 6111 6111 6879 6879 7156 7156 6426 6426 6496 6496

Notes: This table shows estimates from equation (14). Data from 100 largest CBSAs, from 2000 and 2014 in
column 1 and 2 and from 1990 to 2014 in all other columns. Downtown of each CBSA consists of all tracts closest
to the center of each CBSA that account for 10% of that CBSA’s population in 2000 in column 1 to column 6, 15%
of the CBSA population in column 7 and 8, and all tracts with centroid within 5 miles of the city center in column
9 and 10. The house price index used in estimation is the Zillow All Home Index in column 3 and 4, Census median
house price hedonically adjusted for number of rooms in column 5 and 6, and the Zillow 2 Bedroom Index in all
other columns. Each observation is weighted by the number of households in the income bracket with the fewest
households amongst the four brackets in each independent variable. Standard errors clustered at the CBSA-quality
level are in parentheses. KP F-Stat = Kleibergen-Paap Wald F statistic.

Table D.8: ρ College Cutoff Robustness

30 40 50 60

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

ρ̂ 1.84 2.02 2.48 3.04 2.51 4.48 2.33 4.34
(0.47) (0.53) (0.34) (0.70) (0.35) (1.04) (0.37) (1.40)

Instrument None Base None Base None Base None Base

R2 0.15 0.21 0.22 0.18
KP F-Stat 23.9 26.3 17.0 14.5

Obs 6,235 6,235 5,878 5,878 5,452 5,452 4,734 4,734

Notes: This table shows estimates from equation (14). Data from 100 largest CBSAs in 1990 and 2014. Columns 1
and 2 define high-quality tracts as those that contain 30% of residents with at least a bachelor’s degree, column 3
and 4 as at least 40%, column 5 and 6 as at least 50% and column 7 and 8 as at least 60%. Each observation is
weighted by the number of households in the income bracket with the fewest households amongst the four brackets
in each independent variable. Standard errors clustered at the CBSA-quality level are in parentheses. KP F-Stat =
Kleibergen-Paap Wald F statistic.
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Table D.9: Pre-Trend and Balance Tests of Bartik Instrument

Panel A: Pre-trend

Dependent variable from ρ estimation in pre-period (1970 to 1990) Coefficient of Std. Er. Obs.
90-14 Bartik

Main Specification 0.28 (0.92) 5,833

College Share Cut-off of 30% 2.23 (1.42) 7,023

Panel B: Balance Tests

Variable in initial level (1990) Coefficient of Std Er. Correlation with Obs.
90-14 Bartik 90-14 Bartik

Relative house prices (pcD/pcS) 0.0012 (0.0027) 0.14 1,376

Relative share of households in high-quality tracts 0.000016 (0.000029) 0.10 1,449
(λcDH/λcD)/(λcSH/λcS)

Relative share of high-income households 0.0035 (0.0039) 0.10 1,600
(> $100,000), (λcD,100k/λcD)/(λcS,100k/λcS)

Notes: Panel A of the table shows estimates from a regression of the dependent variable from the ρ estimation in
equation 14 computed in the pre-period of 1970 to 1990, on the 1990 to 2014 Bartik income shock. Row 1 shows
estimates using our baseline definition of high-quality neighborhoods as having a college share above 40%, and row 2
shows estimate using a 30% college share. Standard errors are clustered at the CBSA-quality level. Each observation
is weighted by the number of households in the income bracket with the fewest households amongst the four brackets
in each independent variable. Panel B shows coefficients from CBSA-level regressions with the 1990 to 2014 Bartik
shock as an independent variable and initial 1990 levels, as shown in the table, as dependent variables. The downtown
of each CBSA consists of all tracts closest to the center of each CBSA that account for 10% of that CBSA’s population
in 2000. Data from the 100 largest CBSA.
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Appendix E Reduced Form Evidence of Amenity Response to

CBSA Income Growth

In the model, changes in demand for locations are amplified by endogeneous neighborhood change.

As high-income households move downtown, neighborhoods with low-quality amenities are replaced

by neighborhoods with high-quality amenities. In this appendix, we provide some reduced form

empirical evidence for this model mechanism. Specifically, we plot the growth in restaurant quality

downtown minus that for the suburbs against the Bartik income shock. To measure tract-level

restaurant quality, we first leverage novel smartphone movement data (Couture et al., 2021), de-

scribed below, to measure the quality of the 100 largest restaurant chains in the smartphone data.

We define chain quality as the propensity of high-income individual to visit a given chain, relative to

the propensity of the average individual, controlling for their relative proximity to establishments.

Then, we measure tract-level restaurant quality using the National Establishment Time-Series

(NETS) geocoded census of local restaurants in 2000 and 2012.

We now describe the smartphone and NETS data, before explaining in detail how we compute

tract-level restaurant quality.

Smartphone Movement Data The smartphone movement data is from October 2016 to August

2018. Our data provider aggregates data from multiple apps’ location services.17 Each visits comes

from raw movement data intersected with a basemap of polygons (usually buildings). Each visit

receives a unique location, device, and time stamp.

We define the permanent home location of each device as in Couture et al. (2021), using 90

billion visits to residential establishments. We first identify a individual’s weekly home location as

the residential location where it spends most night hours, conditional on visiting that location at

least three different nights that week. We then assign permanent home location to any device that

has the same weekly home location for three out of four consecutive weeks. We are able to identify

permanent homes for 87 million devices between 2016 and 2018. We refer to this location as the

device’s home location.

We have 600 million visits to chain restaurants in our smartphone sample. In our estimation,

we restrict attention to 60 million of these visits that we can identify as starting from home using

the time stamp and duration of each visit. We define a visit as starting from home if the previous

visit was to home and ended less than 60 minutes earlier.18 We refer to Couture et al. (2021) for

additional details on that data.

17Athey et al. (2018) and Chen and Rohla (2018) use similar smartphone data from a different provider. We
refer to Couture et al. (2021) for evidence that the spatial distribution of smartphone devices provides a balanced
representation of the U.S. population along a number of dimensions (CBSA, income, race, education); the distance
traveled to different destinations implied by the smartphone data resembles that from the NHTS travel survey; and
the mapping of commercial establishments visited by smartphone users to the business registry is relatively complete.

18We do not observe all travel by individuals, so visit duration is a lower bound and missing in some cases. This
explains why we are only able to ascertain 10 percent of trips as staring from home, wheareas for instance about 30
percent of trips to restaurants in the NHTS start from home.
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NETS Data The 2012 National Establishment Time-Series (NETS) Database includes 52.4 mil-

lion establishments with time-series information about their location, industries, performance and

headquarters from 1990-2012. The NETS dataset comes from annual snapshots of U.S. establish-

ments by Duns and Bradstreet (D&B). D&B collects information on each establishment through

multiple sources such as phone surveys, Yellow Pages, credit inquiries, business registrations, public

records, media, etc. Walls & Associates converts D&B’s yearly data into the NETS time-series.

The NETS data records the exact address for about 75 percent of establishments. In the remaining

cases, we observe the establishments zip code and assign it’s location to the zip code centroid.

Neumark et al. (2007) assess the NETS reliability by comparing it to other establishment

datasets (i.e., QCEW, CES, SOB and BED data). Their conclusions support our use of the NETS

data to compute a long 12-year difference from 2000 to 2012. They report that NETS has better

coverage than other data sources for very small establishments (1-4 persons), which is often the

size of consumption amenity establishments.

Table E.10 shows the number of establishment in the smartphone data basemap for the ten

largest restaurant chains, compared with recent estimates of the actual number that we found

online and the 2012 NETS data. This comparison shows that the smartphone basemap is nearly

complete, with one exception, Starbucks, where almost half of the establishments are missing

from the smartphone basemap. Additionally Table E.10 suggests that the NETS database is less

complete than the smarphone basemap, but some of this difference is due to the earlier count. The

NETS contains a majority of establishments for nine of the ten largest chains, with the exceptions

of Subway where the NETS misses more than half the actual number of establishments.

Estimating Chain Quality We define quality for the 100 largest restaurant chains, with the

most establishments in the smartphone data basemap. We index block groups by i, venues by j,

and chains by c. We denote by Nic the total number of visits by individuals living in block i that

start from home and end in venues in chain c within its CBSA. Restricting our sample of chain

visits to those that start from a person’s home isolates the choice of visiting a chain from other

considerations of travelers (e.g., eating during lunch at work).

We further control for proximity to venues within that chain to isolate chains that high-income

people like from chains that simply co-locate with them. Our main specification has two controls

for proximity of block i to venues in chain c: first the normalized straightline distance between

the centroid of block i and the closest venue j in chain c, denoted by distic(closest), and second the

normalized number of establishments in chain c within 5 miles of block i, denoted by num5milic.
19

Our estimation sample consists of 2.3 million block*chain pairs with at least one within-CBSA visit

from home. In a first step, we purge the number of visits from the impact of proximity to chains

19We normalize distic(closest) to equal 1 at the median distance of the closest venue for that chain, computed across
all blocks with at least one visit to that chain. The variable distic(closest) is then in multiples of that median distance.
We do this to ensure that our distance-adjusted number of visits remains unchanged for a block at median distance
from chain c.
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Table E.10: Ten Largest Restaurant Chains in NETS vs Smartphone Data

NETS 2012 Smartphone NETS 2012 Smartphone Most Recent
Chain Rank 2016 Rank Count 2016 Count Actual Count

Subway 1 1 10,946 25,889 24,000+
McDonalds 2 2 9,889 14,914 14,000+

Starbucks 3 3 6,581 7,636 14,000+
Pizza Hut 4 6 5,754 6,695 7500+

Burger King 5 5 5,660 7,011 6500+
Wendys 6 8 4,127 5,683 5000+

Dunkin Donuts 7 4 4,030 7,418 8500+
KFC 8 14 3,997 3,157 4000+

Taco Bell 9 7 3,544 6,102 6000+
Dairy Queen 10 10 3,380 4,199 3500+

Notes: The data source from the most recent actual count obtained on 19 December 2018 from the following
websites:
Subway: https://www.subway.com/en-US/exploreourworld

McDonald: https://news.mcdonalds.com/our-company/restaurant-map

Starbucks: https://www.loxcel.com/sbux-faq.html

Pizza Hut: https://locations.pizzahut.com/

Burger King: https://locations.bk.com/index.html

Wendys: https://locations.wendys.com/united-states

Dunkin Donuts: https://www.dunkindonuts.com/en/about/about-us

KFC http://www.yum.com/company/our-brands/kfc/

Taco Bell: http://www.yum.com/company/our-brands/taco-bell/

Dairy Queen: https://www.qsrmagazine.com/content/23-biggest-fast-food-chains-america
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by running:

lnNic = β1 + β2ln(distic(closest)) + β3ln(num5milic) + εic.

We then compute a number of visits purged of proximity as:

N̂ic = exp
(

lnNic − β̂2 ln(distic(closest))− β̂3ln(num5milic)
)

In the next step, we compute the relative propensity of high-income devices to visit each chain,

relative to the average device. We assign income at the block group level, and define as high-income

block groups that had median income of $100,000 per year in 1999 dollars in the 2014 ACS. The

share of visits to chain c out of total visits to the 100 largest chains, among individuals living in

high-income block groups, is:

SHighc =

∑
i∈Ic N̂

High
ic∑100

c=1

∑
i∈Ic N̂

High
ic

,

where Ic is is the set of block groups with a positive number of visits to chain c. We can then define

the quality of chain c as the propensity of individuals in high-income block groups to visit chain c

relative to that of individuals in the average block:

Qualityc =
SHighc

Sc
,

where Qualityc = 1 means that high-income individuals are as likely to visit chain c as the average

device, controlling for differences in proximity to venues in chains c. Among the restaurant chains

with the highest quality are smaller gourmet chains like Shake Shack (1st), Zoës Kitchen (2nd) and

California Pizza Kitchen (3rd), as well as large national chains like Chipotle (6th), Panera Bread

(7th), and Starbucks (14th).

We perform a number of robustness checks. First, we note that excluding block*chain pairs

with zero visits from home is likely to bias our quality index against chains that locate far from

high-income residents. We experiment with including all block*chain pairs with zero visits in our

regression and index computation, and obtain an index with a correlation of 0.94 with our preferred

index.20 We also experiment with different income cut-off and find that an index defining high-

income blocks as having median income above $75,000 has a correlation of 0.93 with our preferred

index. Finally, we experiment with adding controls for number of chains farther away than 5 miles,

and for demographic similarity between block i and the block in which the closest venue in chain c

is located (median income difference, age difference, share college difference, EDD measure of racial

dissimilarty in Davis et al. 2019). The correlation of these indices with our preferred chain quality

index is above 0.98.

20In that case, Nic = 0 gets adjusted upward if the closest venue to block i is farther than median distance, and
therefore included as a positive number of visits in the index computation, possibly creating the opposite bias as in
our preferred specification. We use the invert hyperbolic sine transform to allow for log of zeros.

72



Figure E.6: Difference in Amenity Quality Growth between Downtown and the Suburbs Across
CBSAs with Different Aggregate Bartik Income Shocks
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Note: This figure plots the difference in the change in the amenity quality of tracts downtown between 1990 and 2014
and the amenity quality of tracts in the suburbs over the same period across CBSAs. This quality growth differential
is plotted against CBSA-level Bartik income shocks over the same period for the largest 100 CBSAs in 1990. Tract
amenity quality growth in an area is measured as the percent change in the population-weighted median restaurant
chain quality index across tracts in the area. The line through the scatterplot shows the CBSA-population weighted
linear fit.

From Chain Quality to Tract-level Restaurant Quality In the NETS data, we can find

all of the 100 largest chains in the smartphone data in 2012, accounting for 64,000 establishments,

and 96 chains in 2000, accounting for 49,000 establishments.21 We compute restaurant quality at

the tract level as the average quality of all chains within the tract. If a tract contains fewer than 3

chains, we take the average over all tracts with centroid within 0.25 mile from the tract, and so on

in further 0.25 mile increment until there are at least 3 chains. We set a limit of 1.5 miles in urban

areas, and 3 miles in suburban areas, below which we set quality to missing if there are still fewer

than 3 chains within that limit. This procedure generates 4 percent missing tracts in urban areas,

and 15 percent in suburban areas.22

Results Figure E.6 shows the change in population-weighted median tract restaurant quality

downtown minus that for the suburbs against the CBSA Bartik income shock (defined in the main

paper). The figure shows that downtowns restaurant quality became relatively higher than that in

the suburbs in response to CBSA income growth between 1990 and 2014. The association between

21The earliest NETS data is in 1992, but we cannot reliably define tract quality so far back in the past, because
too many of the largest chains in our 2016-2018 smartphone data only experienced national growth after 1992.

22For urban tract, there are at least three chains within tract for 15 percent of tracts, within 0.5 miles for 29 percent
of tracts, and within 1 mile for 73 percent of tracts. For suburban tracts, there are at least three chains within tracts
for 20 percent of tracts, within 0.5 miles for 25 percent of tracts, within 1 mile for 55 percent of tracts, and within 2
miles for 86 percent of tracts.
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large income growth and outsized amenity quality growth downtown relative to the suburbs is

driven, for the most part, by absolute amenity quality growth downtown. This finding is consistent

with the prediction of our model’s key amplification mechanism. As high-income households move

downtown, the amenity mix of downtown neighborhoods change towards those consumed by high-

income individuals.

Appendix F Empirically Measuring Housing Expenditure Engel

Curves

To create empirical measures of how the share of total expenditure spent on housing varies with

income we use “Housing” spending by income deciles as reported in public release tables from

the Consumer Expenditure Survey (CEX).23 The CEX “Housing” category includes the following

sub-categories: Shelter, Utilities, Household Operations, Housekeeping Supplies, and Household

Furnishings. Shelter expenditures include rent paid by renters, mortgage and interest charges

paid by homeowners, property taxes paid, and maintenance expenditure. Shelter also includes

a sub-category of “Other Lodging” which aggregates spending on hotels, vacation rentals and

child dorm expenditures. Household Operations and Household Supplies both include spending

done to clean and maintain the household. The former measures spending done to pay others to

maintain the household and includes, for example, spending on housekeeping services, gardening

and lawn care services, dry cleaning services and home security services. The latter measures

spending done if the individual was going to maintain the house themselves and includes, for

example, spending on cleaning supplies, spending on laundry supplies, and spending on gardening

items. Finally, Household Furnishings include spending on furniture, home appliances, and other

household furnishings (like lamps, rugs, closet organizers, and home computers).

In our model, the notion of housing expenditure is any spending needed to own and maintain

a house in a given neighborhood type. There is some inherent judgment on how to match the

model notion of housing expenditure to its empirical analog. We explore two empirical notions of

housing expenditure from the CE. First, we use a broad measure of housing expenditures defined as

all CEX Housing expenditures excluding expenditures on Other Lodging. This includes spending

on Shelter, Utilities, Household Operations, Housekeeping Supplies and Household Furnishings but

excludes spending on hotels, vacation homes and child dorm expenditures. Second, we also ex-

plore a narrower measure of spending that focuses on just Shelter (less Other Lodging) and Utility

expenditures. This narrower measure excludes the other components of the Housing expenditure

category like furniture and spending associated with gardening and cleaning. Figure F.7 below

shows the share of housing spending relative to income in the model relative to the data. For the

data, we show the patterns using both the broad and narrow spending measures.

As seen from the figure, we compare the slopes of the housing spending “Engel Curves” for

23See https://www.bls.gov/cex/tables/calendar-year/mean-item-share-average-standard-error.htm#

cu-income.
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Figure F.7: Housing Expenditure Share by Income
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Notes: This figure shows both the model implied relationship between share of income allocated to housing (solid
line) and the corresponding data from the Consumer Expenditure Survey in 2014 (the dashed line uses the broad
housing expenditure measure, the dotted line uses the narrow housing expenditure measure). In published tables,
the CEX reports average household income and expenditure for each household income decile. The earliest year that
the CEX reported average expenditures by income decile was 2014. The CEX line includes only eight data points,
one for each decile where decile income exceeded $20,000 in 1999 dollars.

the model and for the two separate empirical measures. To do so, we simply regress each housing

expenditure share measure on log income. As discussed in the paper paper, the model yields a

semi-elasticity of -0.19; a 10 percent in income is associated with the housing spending share falling

by -1.9 percentage points. The semi-elasticities associated with the broad and narrow expenditure

measures are -0.12 and -0.11, respectively. Notice, while the level of the spending share varies with

how we define spending, the slope of the relationship is roughly similar regardless of whether we

use the broad or narrow CEX expenditure measure.

There is also a question of whether we should use an empirical measure of housing expendi-

ture shares relative to income or relative to expenditure. In our static model, total income and

total expenditure are the same. Empirically, an individual’s current income can differ from their

expenditure due to borrowing/savings or due to differential measurement error in the reporting of

income and expenditure. As a result, we also explore the empirical relationship of our broad and

narrow housing expenditure measures relative to total CEX expenditures. For our broad housing

expenditure measure relative to total expenditures, we get a semi-elasticity estimate of -0.067. For

our narrow housing expenditure measure relative to total expenditures, we get a semi-elasticity es-

timate of -0.073. The empirical estimates of the housing Engel curves using housing shares relative

to expenditure are even flatter than what we find relative to income. Given these results, in the

paper, we explore the robustness of our results when we target various empirical measures of the

relationship between housing expenditure and income (or expenditure).

75



Appendix G Quantification Appendix

This appendix provides more details on how we select the parameters used in the baseline calibration

and the method of moments procedure to calibrate the model to the baseline equilibrium for 1990.

Appendix G.1 Parametrization of Land Market Transmission Mechanism (εS

and εD)

In the model, the area-specific elasticity of land supply εr is equivalent to an elasticity of housing

supply. This elasticity determines the strength of an important welfare transmission mechanism

through land markets. When housing supply is inelastic, an influx of rich households in high-quality

neighborhoods downtown raises rents for poor incumbent households in low-quality neighborhoods.

Saiz (2010) provides housing supply elasticity estimates εc for 95 large Metropolitan Statistical

Areas, based on geographical constraints and housing regulations. We match 83 of these MSAs to

our CBSA sample. Unfortunately, these are not estimated separately for downtown and suburban

areas. To calibrate εD and εS , we posit that housing supply elasticities vary systematically, in equi-

librium, with average household density (densityc), and estimate the following log-linear regression

of εc on densityc:

ln (εc) = 1.97− 0.30
(0.07)

ln (densityc) + ξεc, R
2 = 0.21 (G.10)

We rely on cross-CBSA variation to estimate this equation. We then define ε̂D and ε̂S as the

fitted values from equation (G.10) computed at typical density of D and S neighborhoods in the

100 largest CBSAs. We find ε̂D = 0.60 and ε̂S = 1.33.24 We use these values in our baseline

calibration and test the sensitivity of our results to alternative parameter values.

Appendix G.2 Parameterization of Public Amenities and Homeownership

A household earning labor income w, receives a transfer of χ(w) = OS(w)λ1999,rq(w)
∑

rq(p
h
2014,rq−

ph1990,rq), where OS(w) is the share of households with income w who reported owning homes in the

2000 IPUMS data (see Table G.11). This allows us to forgo taking a stance on the initial level of

χ(w) and instead only focus on the changes in χ(w) over time that results from house price growth

due to the income inequality shock that we study.

24In our downtowns, the average CBSA population-weighted household density is 4, 300 households per square
mile, versus 300 in the suburbs. The highest density CBSA, New York, has 850 households per square mile, so the
average density in D is out-of-sample. However, ε̂D = 0.60 turns out to equal the elasticity of housing supply in
Miami, which is the metropolitan area with the most inelastic housing supply in Saiz (2010).
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Table G.11: Income and Homeownership Rates by Income Decile

Income ($1,000s) 2000 Homeowner Share
Decile 1990 2014 % Growth Downtown Suburbs

1 28.3 27.9 -1.14 32% 49%
2 34.7 33.9 -2.14 35% 53%
3 41.2 40.5 -1.83 39% 57%
4 48.2 47.9 -0.59 43% 62%
5 55.8 56.4 1.18 47% 68%
6 64.4 66.4 3.10 51% 73%
7 74.5 78.5 5.34 55% 77%
8 87.8 95.2 8.52 60% 82%
9 108.6 122.7 13.02 65% 86%
10 164.2 197.0 20.02 71% 91%

Notes: This table shows the average income in 1990 and 2014 and 2000 homeownership rate of households by
income decile in 2000, using data from IPUMS. See Appendix C for details on this data source.

Appendix G.3 Calibration Details

The calibration procedure minimizes the following objective function over parameters θ:

θ̂ = arg min
θ={ prq

pDL
,
Brq
BDL

}rq∈{DH,SL,SH}

ˆ̄g(θ)′Wˆ̄g(θ)

where g(X; θ1)=[g1(X; θ), g2(X; θ)] consists of two vectors of moments. The first set of moments

matches the propensity to reside downtown by income w as predicted by the model (λD(w; θ) =

λDL(w; θ) + λDH(w; θ) for λrq(w; θ) defined in 3) to that observed in the data (λ̂D(w):

g1(θ) = λD(w; θ)− λ̂D(w)

for incomes w in $5,000 increments from $25,000 to $500,000 (in 1999 US dollars). The second

set of moments matches the predicted price in each of rq ∈ {DH,SL, SH} relative to that in the

DL (using equation 6 to the relative price observed in the data (p̂rq):

g2(θ) = prq(θ)− p̂rq

The weighting matrix used in the baseline calibration attributes a weight of 2,000,000/96 to

each element of the first (U-shape) moment and 50/3 to each element of the second (relative price)

moment.
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Appendix H Counterfactual and Welfare Appendix

In this appendix we provide further details on the counterfactual simulation procedure and welfare

calculations from Section 5 of the paper. We then present robustness on these results.

Appendix H.1 Computing Counterfactuals

In this section, we derive the system of equations that we use to solve for a counterfactual equilib-

rium for a different income distribution F ′(w), conditional on (i) an initial calibration corresponding

to the income distribution F (w), and (ii) the model elasticities {ρ, γ, εr,Ω}. To compute this equi-

librium, we require the calibrated values at the initial equilibrium for {λrq(w), prq}, where Lrq is

the total population living in neighborhoods of type {r, q} in the initial equilibrium, i.e.:

Lrq =

∫
F (w)λrq(w)dw.

We write a counterfactual equilibrium in changes relative to the initial equilibrium, denoting

by x̂ = x′

x the relative change of the variable x between the two equilibria. The counterfactual

equilibrium is the solution to the following set of equations for {(prq)′ , λ′rq(w), L′rq} –or, equivalently,

their “hat” values.

First, changes in housing costs are given by:

R̂r =

(∑
q

R̂rL̂rq

) 1
1+εr

. (H.11)

Note that L̂rq =
∫
λ′rq(w)dF ′(w)∫
λrq(w)dF (w)

where λ′rq(w) is unknown and a solution of the system of equations

described here and the counterfactual distribution of income F ′(w) is taken as given.

Second, housing prices in the new equilibrium are defined by25:

(prq)
′ =

γ

γ + 1
krqRrR̂r +

1

γ + 1
W ′rq

(
p′rq
)
, (H.12)

where the function W ′rq(p) is defined by:

W ′rq(p) =

∫
w Λ′rq(p, w) [w + χ(w)′]F ′(w)dw∫

w Λ′rq(p, w)F ′(w)dw
, (H.13)

with Λ′rq(p, w) =
λ′rq.r(w)

[w+χ(w)−p] . The χ(w) are assumed constant between the two equilibria.

Third, define overall neighborhood attractiveness B̃rq = N
1
γ
rqBrqG

Ω
r . The change in neighbor-

hood attractiveness is:

25Note that krqRr is known in the initial equilibrium using equation B.7 and the known variables prq, λrq.r (w) , F (w)
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̂̃Brq = N̂
1
γ
rqĜ

Ω
r (H.14)

In this expression, the change in the number of neighborhoods is given by:

N̂rq = L̂rq
(prq)

′ − krqR′r
prq − krqRr

,

Change in tax levied is:

Ĝr =

∫
F ′(w)

(∑
q λ
′
rq(w)

)
T ′r(w)dw∫

F (w)
(∑

q λrq(w)
)
Tr(w)dw.

where T ′r(w) is the tax scheme in the counterfactual equilibrium, possibly different (exogeneously

so) from the one in the reference equilibrium.

Finally, the counterfactual location choice of workers can be simply expressed as a function of

initial location choices λrq, changes in neighborhood quality and prices defined above, and changes

in income, which we take as an exogenous input to the counterfactual. Specifically, changes in

location choices are given by:

λ̂rq (w) =
̂̃Brqρ
V̂ ρ (w)

[w + χ′(w)− p′n]ρ

[w + χ′(w)− pn]ρ
, (H.15)

In parallel, we get the change in welfare given by:

V̂ ρ (w) =
∑
rq

̂̃Brqρ [w + χ′(w)− p′n]ρ

[w + χ(w)− pn]ρ
λrq (w) , (H.16)

Values for {p′rq, λ′rq(w), L′rq, R
′
rq} are the solutions of equations (H.11)-(H.15) that define a

counterfactual equilibrium of the economy corresponding to an alternative distribution of income

F ′(w) in the city.

Given that the model is over-identified, the baseline model matches the 1990 data imperfectly.

We treat the log-differences between data and model as measurement error, and hold it constant

across periods when we conduct counterfactuals. Formally, for our main counterfactual, let Θ∗

denote the estimated parameters coming from the minimum distance procedure, let I1990 denote

the income distribution in 1990, and let ε1990 denote a vector of measurement error defined as the

difference between model-based (log) variables and data (log) variables in year 1990:

log x1990 = log x̄1990
(
Θ∗, I1990

)
+ ε1990. (H.17)

Similarly, we have:
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log x2014 = log x̄2014
(
Θ∗, I2014

)
+ ε2014. (H.18)

We are reporting such counterfactual changes of the form:

log x̄2014
(
Θ∗, I2014

)
− log x̄1990

(
Θ∗, I1990

)
,

where model-based changes can be computed using the ”exact hat” procedure explicited above.

When reporting counterfactuals, we keep measurement errors unchanged at their 1990 level.

Appendix H.2 Additional Counterfactual and Welfare Results

Appendix H.2.1 Alternative Representation of Main Counterfactual Result

Figure H.8 shows the predicted change in sorting patterns in our main counterfactual between 1990

(solid orange) and 2014 (solid blue), compared with the actual change (the corresponding dashed

lines) at each household income level between $25,000 and $350,000.

Figure H.8: Counterfactual impact of shift in income distribution on the U-shape
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Notes: This figure shows the change in the propensity to live downtown between 1990 (orange) and 2014
(blue) for households in different $5,000 income brackets between $25,000 and $350,000. The solid lines
compare the predicted share downtown by income in the model calibrated to the actual data in 1990 to
the predicted share downtown that results from the change in the income distribution between 1990 and
2014. The dashed lines compare the share downtown in the data for 1990 and 2014.

Appendix H.2.2 Importance of Endogenous Public Amenities in Base Specification

As downtown gets richer, taxes collected are higher and public amenities respond for all households

downtown. This effect makes both richer and poorer households better off downtown, but housing

prices respond to this amenity increase which tends to hurt poorer households. To quantify the net

effect, we compute a 1990-2014 counterfactual with no endogeneous response in public amenities.
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Figure H.9 reports the results (red bars), and compares it to the baseline (clear bars). We see that

endogenous public amenities tend to mitigate the welfare differential between richer and poorer

households somewhat, but are far from strong enough to overturn the general tendency of spatial

sorting responses to increase well-being inequality.

Figure H.9: Shutting Down Public Amenities

Table H.12 shows the robustness of our results to alternative values of the parameters that

govern the public amenity response (the property tax rates downtown TD and in the suburbs TS

and the elasticity of public amenities Ω). The response of our welfare estimates to the elasticity of

the endogenous component of public amenities confirms that low-income households benefit from

the increases in local tax revenues that accompany gentrification. However, as we highlighted in

our discussion of Figure H.9 the effects of changing the parameters governing endogenous public

amenities on welfare is quantitatively small.

Appendix H.2.3 Welfare Impact of Alternative Changes to Income and Population

In the analysis above, we have studied the effects of changes in the observed income distribution

holding everything else, including population, constant. We complement this analysis by studying

the implication of total population change itself. Further, to tease out what characteristic of the

1990-2014 income shock are important in driving our result, we explore alternative changes in the

income distribution.

Table H.13 reports the results. Row 1 re-displays our baseline results. In the second row, we

feed in both the actual population change and the change in the income distribution between 1990

and 2014. The third row isolates the effects of population growth separately from income growth,

by feeding in only the observed change in population, holding the underlying income distribution

constant. Accounting for growth in population results in a larger increase in welfare inequality
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Table H.12: Robustness of Welfare Estimates to Alternate Public Amenity Parameters

(∆CV −∆Inc)/Inc1990 ∆ Urban Share

All Households Renters Only Predicted (p.p.) Share of Actual

Decile: Top Bottom Diff. Top Bottom Diff. Top Bottom Top Bottom

Base Specification 3.17 -0.42 3.59 1.81 -0.74 2.55 1.16 -1.75 57% 41%

Property Tax Rates (base: TD = 0.2 and TS = 0.3)
TD = 0.15, TS = 0.25 3.30 -0.43 3.73 1.91 -0.79 2.70 1.16 -1.73 57% 41%
TD = 0.25;TS = 0.25 3.04 -0.41 3.46 1.79 -0.71 2.51 1.13 -1.68 56% 40%

Public Amenity Elasticity (base: Ω = 0.05)
Ω = 0 2.64 -0.47 3.11 1.56 -0.83 2.40 1.31 -1.90 65% 45%
Ω = 0.03 2.64 -0.47 3.11 1.56 -0.83 2.40 1.31 -1.90 65% 45%
Ω = 0.08 2.64 -0.47 3.11 1.56 -0.83 2.40 1.31 -1.90 65% 45%

compared to our baseline. The larger increase stems from two forces. First, population growth

amplifies the love of variety effects described above. Second, the increase in population drives

up rents everywhere but more so in the downtown areas where land is more constrained. Given

our unit housing assumption, this impacts poorer households disproportionately. Changing both

population and income increases the well-being gap between high and low income residents by over

5.7 percentage points (on a base of 19 percentage points). Additionally, poorer renters are made

worse off in absolute terms by an amount equal to 3.3 percent of their income.

In the fourth row of the table, we return to holding population fixed, and we now assume

that all households experience the same income growth equal to the 1990-2014 per capita average.

Interestingly, under this alternative income change, the poor are much more worse off in absolute

terms relative to our base specification. This happens because a broad based increase in income

generates a stronger spatial sorting response, with many middle class individuals in the suburbs

moving up their residential Engel curves. This rising demand for downtown living puts more

upward pressure on house prices than in our baseline counterfactual, where incomes rise for only a

few households at the top of the distribution. As a result, the increase in welfare inequality due to

spatial responses is higher with broad based income growth than in our baseline case, at about 2.7

percent (instead of 1.7 percent).

In the final rows (5 through 7) of the table we explore crude predictions about the potential

future welfare impact of neighborhood change. Specifically, we hold population growth fixed and

ask what happens through the lens of our model when income growth increases by an additional

10, 20, and 30 percent for everyone, starting from the actual 2014 income distribution. These

counterfactuals shed some light on the potential effects of future economic growth on the spatial

distribution of residents within cities. Holding population fixed, the quantified model suggests

that the spatial sorting response from an additional 10 percent income growth for all individuals

(which does not impact income inequality) further increases well-being inequality. The mechanisms

are the same as what we highlight above. Our model predicts that if income growth in the U.S.
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Table H.13: Welfare Estimates under Different Counterfactual Income Distributions

(∆CV −∆Inc)/Inc1990

All Households Renters Only

Decile: Top Bottom Diff. Top Bottom Diff.

Base Specification (aggregate population fixed)
[1] 3.17 -0.42 3.59 1.81 -0.74 2.55

Alternative Driving Forces (1990-2014)
[2] Allowing for population growth 8.37 -1.16 9.53 3.91 -3.58 7.49
[3] Only population growth, no change to income distribution 4.30 -0.70 5.00 1.65 -2.76 4.41
[4] No population growth, income distribution shifts rightwards 2.76 -1.10 3.86 2.05 -2.34 4.39

Projected Further Welfare Changes from Further Income Growth from 2014 Onward
[5] HHInci = HHInci,2014 × 110% 3.28 -1.27 4.55 2.28 -2.59 4.87
[6] HHInci = HHInci,2014 × 120% 10.41 -3.51 13.92 6.59 -6.42 13.01
[7] HHInci = HHInci,2014 × 130% 14.77 -5.33 20.10 8.01 -10.20 18.21

continues, even without further increase in income inequality, additional gentrification and within

city neighborhood change will be an enduring feature of the urban landscape. This suggests that it is

not income inequality per se that drives our results, but instead an increase in the absolute number

of high-income households regardless of what is happening to the rest of the income distribution.

Before turning to counterfactual policy analysis, we now analyze two counterfactuals that pro-

vide additional model validation.

Appendix H.2.4 Robustness to Alternate Definition of Downtown

Figure H.10 compares the fit of our model calibrated to data based on our baseline downtown

definition, where “downtown” includes all Census tracts closest to the city center that include 10%

of the population in 2000, with a larger alternative definition that contains 15% of the popula-

tion.26 Table H.14 replicates the welfare results for our main counterfactual exercise using these

two downtown definitions. The welfare effects using the larger downtown definition are qualitatively

similar, though less pronounced (consistent with the evidence in Couture and Handbury (2017) that

neighborhood change was highly localized over this period).

26Our calibration requires Census microdata that are only available at the geography of Public Use Microdata
Areas (PUMA). This geography is too large to construct U-shape that we calibrate to for a smaller 5% downtown
definition. For example, in 1990 we found a median share of 17% across the 100 largest CBSAs.
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Figure H.10: Robustness of Calibration to Alternative Downtown Definition

Notes: These figures compare the fit of the calibrated model to the two targeted moments, under two different
definitions of the downtown area. The left-hand plot shows the share of households in each $5,000 income bracket
that reside downtown in 1990. The dashed line shows the data, while the solid line shows the prediction of the
calibrated model. The data are constructed from micro IPUMS data and reflect the propensity to reside downtown
by income in the 27 CBSAs in which PUMAs (the finest spatial unit the IPUMS data) are small enough relative
to the downtown definition to make useful inference here. The curve is interpolated to address top-coding in the
IPUMS data. See Appendix C for more details. The clear bars in the right-hand plot shows the average Zillow 2
Bedroom Home Value Index in tracts of each location-quality type, normalized by the average index in low-quality
tracts downtown, in 1996. The solid red bars show the predicted relative housing costs predicted by the calibrated
model.

Table H.14: Robustness of Welfare Estimates to Alternative Downtown Definition

(∆CV −∆Inc)/Inc1990

All Households Renters Only

Decile: Top Bottom Diff. Top Bottom Diff.

Base Specification 3.17 -0.42 3.59 1.81 -0.74 2.55

Alternative (15pct) Downtown Definition 1.35 0.23 1.12 1.09 0.02 1.07
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Appendix H.2.5 Alternative Policy Counterfactual

Figure H.11: Location Choices and Well-Being under Zoning Policy

Notes: This figure shows the change in the propensity to live downtown (on the left) and change welfare
(on the right) that result from the change in the income distribution by income decile. The clear bars
show the results from the baseline counterfactual. The blue bars show the results from the alternative
counterfactual with zoning that preserves the neighborhood mix (i.e., the share of neighborhoods of each
rq type) at its level from the 1990 equilibrium.

Appendix H.2.6 Additional Potential Mitigating Force

A limitation of the benchmark model is the assumption that increased variety of neighborhoods of

a given rq type only benefits inhabitants of that type of neighborhood. In reality, the gentrification

of downtown neighborhoods can benefit all inhabitants of the city, to the extent they can travel

to consume urban amenities there - as they do in the data. We embed this amenity consumption

into the model, by assuming that non-housing expenditure is spent on a Cobb-Douglas aggregate

of private urban amenities a and the traded good c, and the demand for urban amenities for a

household living in r is a CES aggregate of amenity options in all neighborhoods. That is, the

utility of household ω that lives in neighborhood n ∈ Rrq is:

Un (ω) = Bn

(an
α

)α( cn
1− α

)1−α
bωn (H.19)

an =

(∑
n′

(
βj(n)j′(n′)

) 1
σ (ann′)

σ−1
σ

) σ
σ−1

, (H.20)

where ann′ is consumption of amenities in n′ for a household living in n, σ > 1 is the elasticity

of substitution between amenities in different neighborhoods, and the disutility term βj(n)j′(n′)

depends on the dissimilarity in quality between a household’s own neighborhood and the destination

neighborhood.27 Commuting to amenities is costly, with a cost that increases with distance. The

27We normalize βqq = 1. Typically βqq′ ≤ 1 if j 6= j′, so that households value horizontal differentiation within
quality level, but to a lesser degree outside of their preferred quality type.
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cost of consuming amenities in neighborhood n′ for a household living in n is dδnn′p
a
n′ , where δ governs

how the cost of commuting to consume amenities in n′ varies with the distance dnn′ between n and

n′, and pan′ is the price of amenities in n′. Given our symmetry assumptions, neighborhoods in Rrq
offer the same price index for amenity consumption, P arq.

These amenities are provided by the private developers, who build both housing units and

retail space when they develop neighborhoods. Beyond renting out housing units, they operate

non-tradable services like restaurants and entertainment options that are marketed to households

living in the neighborhood as well as to those living in other parts of the city. Developers use Kh

and Ka units of land to build Hh
rq housing units and Ha

rq retail areas of quality j in location n. Land

markets clear, accounting for demand coming from both housing units and retail space. Developers

in the retail amenity sector are monopolistically competitive, so they set amenity prices, denoted

parq, at a constant markup over marginal costs, i.e.:

parq =
σ

σ − 1
karqRr. (H.21)

The equilibrium price for housing is still pinned down by (6). The number Nrq of neighborhoods

of type (r, q) adjusts so that πrq + πarq − frq = 0, where πirq for i = h, a is the operating profit of a

developer of type (r, q) in activity i.

Through this channel, households benefit from an increased supply of urban amenities outside

of their own type of neighborhood. More details on this channel and its quantification can be found

in the working paper version (Couture et al., 2019).
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